Xmia 2 nedēļas atpakaļ
vecāks
revīzija
b1c06ce733
2 mainītis faili ar 0 papildinājumiem un 357 dzēšanām
  1. 0 357
      Temp_Diag.PY
  2. 0 0
      api_cms.py

+ 0 - 357
Temp_Diag.PY

@@ -1,357 +0,0 @@
-# @Time    : 2019-6-19
-# @Author  : wilbur.cheng@SKF
-# @FileName: baseMSET.py
-# @Software: a package in skf anomaly detection library to realize multivariate state estimation technique
-#            this package has included all the functions used in MSET, similarity calculation, state memory matrix D,
-#            normal state matrix L, residual calculation, and the basic SPRT (Sequential Probability Ratio Test)
-#            function for binary hypothesis testing.
-#
-
-import numpy as np
-import pandas as pd
-import matplotlib.pyplot as plt
-from sklearn.neighbors import BallTree
-import openpyxl
-import time
-#from scikit-learn.neighbors import BallTree
-
-class MSET_Temp():
-
-    matrixD = None
-    matrixL = None
-    healthyResidual = None
-
-    normalDataBallTree = None
-
-
-
-    def __init__(self):
-        self.model = None
-
-    def _get_by_id(self, table_name, ids):
-            """Get data from MySQL database by IDs"""
-            df_res = []
-            engine = create_engine('mysql+pymysql://root:admin123456@106.120.102.238:10336/energy_data_prod')
-            for id in ids:
-                table_name=windcode+'_minute'
-                lastday_df_sql = f"SELECT * FROM {table_name} where id = {id}"
-                df = pd.read_sql(lastday_df_sql, engine)
-                df_res.append(df)
-            return df_ress
-
-    def calcSimilarity(self, x, y, m = 'euc'):
-        """
-        Calcualte the similartity of two feature vector
-        :param x: one of input feature list
-        :param y: one of input feature list
-        :param m: method of the similarity calculation method, default is the Eucilidean distance named 'euc';
-                    a city block distance function is used when m set to "cbd'.
-        :return: the two feature similarity, float, range (0,1)
-        """
-
-        if (len(x) != len(y)):
-            return 0
-
-        if (m == 'cbd'):
-            dSimilarity = [1/(1+np.abs(p-q)) for p,q in zip(x,y)]
-            dSimilarity = np.sum(dSimilarity)/len(x)
-        else:
-            dSimilarity = [np.power(p-q,2) for p, q in zip(x, y)]
-            dSimilarity = 1/(1+np.sqrt(np.sum(dSimilarity)))
-
-        return dSimilarity
-
-
-    def genDLMatrix(self, trainDataset, dataSize4D=100, dataSize4L=50):
-        """
-        automatically generate the D and L matrix from training data set, assuming the training data set is all normal
-        state data.
-        :param trainDataset: 2D array, [count of data, length of feature]
-        :param dataSize4D: minimized count of state for matrix D
-        :param dataSize4L: minimized count of state for matrix L
-        :return: 0 if successful, -1 if fail
-        """
-        [m,n] = np.shape(trainDataset)
-
-        if m < dataSize4D + dataSize4L:
-            print('training dataset is too small to generate the matrix D and L')
-            return -1
-
-        self.matrixD = []
-        selectIndex4D = []
-        # Step 1: add all the state with minimum or maximum value in each feature into Matrix D
-
-        for i in range(0, n):
-            feature_i = trainDataset[:,i]
-            minIndex = np.argmin(feature_i)
-            maxIndex = np.argmax(feature_i)
-
-            self.matrixD.append(trainDataset[minIndex, :].tolist())
-            selectIndex4D.append(minIndex)
-            self.matrixD.append(trainDataset[maxIndex, :].tolist())
-            selectIndex4D.append(maxIndex)
-
-        # Step 2: iteratively add the state with the maximum average distance to the states in selected matrixD
-        while(1):
-
-            if (len(selectIndex4D) >= dataSize4D):
-                break
-
-            # Get the free state list
-            freeStateList = list(set(np.arange(0, len(trainDataset))) - set(selectIndex4D))
-
-            # Calculate the average dist of each state in free to selected state in matrix D
-            distList = []
-            for i in freeStateList:
-                tmpState = trainDataset[i]
-                tmpDist = [1-self.calcSimilarity(x, tmpState) for x in self.matrixD]
-                distList.append(np.mean(tmpDist))
-
-            # select the free state with largest average distance to states in matrixD, and update matrixD
-            selectId = freeStateList[distList.index(np.max(distList))]
-            self.matrixD.append(trainDataset[selectId, :].tolist())
-            selectIndex4D.append(selectId)
-        #format matrixD from list to array
-        self.matrixD = np.array(self.matrixD)
-        self.normalDataBallTree = BallTree(self.matrixD, leaf_size=4, metric = lambda i,j: 1-self.calcSimilarity(i,j))
-
-
-        # Step 3. select remaining state for matrix L
-        #index4L = list(set(np.arange(0, len(trainDataset))) - set(selectIndex4D))
-        #self.matrixL = trainDataset[index4L, :]
-        # consider the limited dataset, using all the train data to matrix L
-        self.matrixL = trainDataset
-
-        # Calculate the healthy Residual from matrix L
-        lamdaRatio = 1e-3
-        [m, n] = np.shape(self.matrixD)
-        self.DDSimilarity = np.array([[1-self.calcSimilarity(x,y) for x in self.matrixD] for y in self.matrixD] + lamdaRatio*np.eye(n))
-        self.DDSimilarity = 1/self.DDSimilarity
-
-        #self.healthyResidual = self.calcResidual(self.matrixL)
-        self.healthyResidual = self.calcResidualByLocallyWeightedLR(self.matrixL)
-
-
-        return 0
-
-    def calcResidualByLocallyWeightedLR(self, newStates):
-        """
-        find the K-nearest neighbors for each input state, then calculate the estimated state by locally weighted average.
-        :param newStates: input states list
-        :return: residual R_x
-        """
-        [m,n] = np.shape(newStates)
-        est_X = []
-        # print(newStates)
-        for x in newStates:
-            (dist, iList) = self.normalDataBallTree.query([x], 20, return_distance=True)
-            weight = 1/(dist[0]+1e-1)
-            weight = weight/sum(weight)
-            eState = np.sum([w*self.matrixD[i] for w,i in zip(weight, iList[0])])
-            est_X.append(eState)
-
-        est_X = np.reshape(est_X, (len(est_X),1))
-        # print(est_X)
-        # print(newStates)
-        return est_X - newStates
-
-    def calcStateResidual(self, newsStates):
-        stateResidual = self.calcResidualByLocallyWeightedLR(newsStates)
-        return stateResidual
-
-    def calcSPRT(self, newsStates, feature_weight, alpha=0.1, beta=0.1, decisionGroup=5):
-        """
-        anomaly detection based Wald's SPRT algorithm, refer to A.Wald, Sequential Analysis,Wiley, New York, NY, USA, 1947
-        :param newsStates: input states list
-        :param feature_weight: the important weight for each feature, Normalized and Nonnegative
-        :param alpha: prescribed false alarm rate, 0 < alpha < 1
-        :param beta: prescribed miss alarm rate, 0 < beta < 1
-        :param decisionGroup: length of the test sample when the decision is done
-
-        :return: anomaly flag for each group of states, 1:anomaly, -1:normal, (-1:1): unable to decision
-        """
-
-        # Step 1. transfer the raw residual vector to dimension reduced residual using feature weight
-        #stateResidual = self.calcResidual(newsStates)
-        stateResidual = self.calcResidualByLocallyWeightedLR(newsStates)
-        # print(stateResidual)
-        weightedStateResidual = [np.dot(x, feature_weight) for x in stateResidual]
-        # print(weightedStateResidual)
-        weightedHealthyResidual = [np.dot(x, feature_weight) for x in self.healthyResidual]
-
-        '''
-        plt.subplot(211)
-        plt.plot(weightedHealthyResidual)
-        plt.xlabel('Sample index')
-        plt.ylabel('Healthy State Residual')
-        plt.subplot(212)
-        plt.plot(weightedStateResidual)
-        plt.xlabel('Sample index')
-        plt.ylabel('All State Residual')
-        plt.show()
-        '''
-        # Calculate the distribution of health state residual
-        mu0 = np.mean(weightedHealthyResidual)
-        sigma0 = np.std(weightedHealthyResidual)
-
-
-        #sigma1 = np.std(weightedStateResidual)
-
-        lowThres = np.log(beta/(1-alpha))
-        highThres = np.log((1-beta)/alpha)
-
-        flag = []
-        for i in range(0, len(newsStates)-decisionGroup+1):
-            # For each group to calculate the new state residual distribution
-            # Then check the  hypothesis testing results
-            mu1 = np.mean(weightedStateResidual[i:i+decisionGroup])
-            si = np.sum(weightedStateResidual[i:i+decisionGroup])*(mu1-mu0)/sigma0**2 - decisionGroup*(mu1**2-mu0**2)/(2*sigma0**2)
-
-            if (si > highThres):
-                si = highThres
-            if (si < lowThres):
-                si = lowThres
-
-            if (si > 0):
-                si = si/highThres
-            if (si < 0):
-                si = si/lowThres
-
-            flag.append(si)
-
-        return flag
-
-
-
-if __name__=='__main__':
-
-    start_time = time.time()
-    myMSET = MSET_Temp()
-    # 1、计算各子系统的健康度(子系统包括:发电机组、传动系统(直驱机组无齿轮箱、无数据)、机舱系统、变流器系统、电网环境、辅助系统(无数据))
-    # 1.1、发电机组健康度评分
-    # Title = pd.read_excel(r'/Users/xmia/Documents/code/Temp_Diag/34_QITAIHE.xlsx', header=None, nrows=1, usecols=[12, 13, 14])
-    # df_D = pd.read_excel(r'/Users/xmia/Documents/code/Temp_Diag/34_QITAIHE.xlsx',
-    #                        usecols=[0, 12, 13, 14], parse_dates=True)  # 读取温度指标:齿轮箱油温12、驱动侧发电机轴承温度13、非驱动侧发电机轴承温度14
-    df = pd.read_csv('/Users/xmia/Desktop/ZN/华电中光/471_QTH1125/2024/#34.csv', usecols=[
-                        'wind_turbine_number',
-                        'time_stamp', 
-                        'main_bearing_temperature', 
-                        'gearbox_oil_temperature', 
-                        'generatordrive_end_bearing_temperature', 
-                        'generatornon_drive_end_bearing_temperature'
-                    ], parse_dates=['time_stamp']) 
-    df = df[df['wind_turbine_number'] == 'WOG01312']
-    df = df.drop(columns=['wind_turbine_number'])
-    df_D = df[df['time_stamp'] > '2024-11-15']
-
-    cols = df_D.columns
-    df_D[cols] = df_D[cols].apply(pd.to_numeric, errors='coerce')
-    df_D = df_D.dropna()  # 删除空行和非数字项
-
-    x_date = df_D.iloc[len(df_D) // 2 + 1:, 0]  #获取时间序列
-    x_date = pd.to_datetime(x_date)
-    df_Temp = df_D.iloc[:, 1:]  #获取除时间列以外的数据
-    df_Temp_values = df_Temp.values
-    df_Temp_values = np.array(df_Temp_values)
-    [m, n] = np.shape(df_Temp_values)
-    # Residual = []
-    flag_Spart_data = []
-    for i in range(0, n):
-        df_Temp_i = df_Temp_values[:, i]
-        trainDataSet_data = df_Temp_i[0:len(df_Temp_i) // 2]
-        testDataSet_data = df_Temp_i[len(df_Temp_i) // 2 + 1:]
-        trainDataSet_data = np.reshape(trainDataSet_data, (len(trainDataSet_data), 1))
-        testDataSet_data = np.reshape(testDataSet_data, (len(testDataSet_data), 1))
-
-        myMSET.genDLMatrix(trainDataSet_data, 60, 5)
-        # stateResidual = self.calcStateResidual(testDataSet_data)
-        flag_data = myMSET.calcSPRT(testDataSet_data, np.array(1), decisionGroup=1)
-        # Residual.append(stateResidual)
-        flag_Spart_data.append(flag_data)
-    flag_Spart_data = np.array(flag_Spart_data)
-    flag_Spart_data = flag_Spart_data.T
-    Temp1 = flag_Spart_data[:,0]
-    Temp2 = flag_Spart_data[:,1]
-    Temp3 = flag_Spart_data[:,2]
-    Temp1_lable = "gearbox_oil_temperature"
-    Temp2_lable = "generatordrive_end_bearing_temperature"
-    Temp3_lable = "generatornon_drive_end_bearing_temperature"
-
-    print(x_date)
-
-    # alarmedFlag = np.array([[i, Temp1[i]] for i, x in enumerate(Temp1) if x > 0.99])  # Flag中选出大于0.99的点
-
-    plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文标签
-    plt.close('all')
-    plt.subplot(311)
-    plt.plot(x_date, Temp1, 'b-o', label=Temp1_lable)
-    plt.ylabel(Temp1_lable)
-    plt.xlabel('时间')
-
-    # plt.scatter(alarmedFlag1[:, 0], alarmedFlag1[:, 2], marker='x', c='r')
-    plt.subplot(312)
-    plt.plot(x_date, Temp2)
-    plt.ylabel(Temp2_lable)
-    plt.xlabel('时间')
-    #plt.scatter(alarmedFlag[:, 0], alarmedFlag[:, 1], marker='x', c='r')
-    plt.subplot(313)
-    plt.plot(x_date, Temp3)
-    plt.ylabel(Temp3_lable)
-    plt.xlabel('时间')
-    #plt.scatter(alarmedFlag[:, 0], alarmedFlag[:, 1], marker='x', c='r')
-    plt.show()
-    print(flag_Spart_data)
-    print(np.shape(flag_Spart_data))
-
-
-    end_time = time.time()
-    execution_time = end_time - start_time
-    print(f"Execution time: {execution_time} seconds")
-
-
-
-#
-
-    '''
-    f = open("speed_vib.txt", "r")
-    data1 = f.read()
-    f.close()
-    data1 = data1.split('\n')
-    rpm = [(row.split('\t')[0]).strip() for row in data1]
-    vib = [(row.split('\t')[-1]).strip() for row in data1]
-
-    # print(rpm)
-    rpm = np.array(rpm).astype(np.float64)
-    vib = np.array(vib).astype(np.float64)
-
-    #vib = [(x-np.mean(vib))/np.std(vib) for x in vib]
-    #print(vib)
-    trainDataSet = [vib[i] for i in range(0,100) if vib[i] < 5]
-    trainDataSet = np.reshape(trainDataSet,(len(trainDataSet),1))
-    testDataSet = np.reshape(vib, (len(vib),1))
-    '''
-
-
-    # Title = pd.read_csv(r'F1710001001.csv', header=None, nrows=1, usecols=[36,37,38], encoding='gbk')
-
-    '''
-    alarmedFlag = np.array([[i, flag[i]] for i, x in enumerate(flag) if x > 0.99])  # Flag中选出大于0.99的点
-    plt.close('all')
-    plt.subplot(211)
-    plt.plot(testDataSet)
-    plt.ylabel('Vibration')
-    plt.xlabel('Sample index')
-    plt.subplot(212)
-    plt.plot(flag)
-    plt.ylabel('SPRT results')
-    plt.xlabel('Sample index')
-    plt.scatter(alarmedFlag[:,0], alarmedFlag[:,1], marker='x',c='r')
-
-    plt.show()
-    '''
-
-
-
-
-
-

+ 0 - 0
api_20241201.py → api_cms.py