cms_class_20241201.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535
  1. import numpy as np
  2. from scipy.signal import hilbert
  3. from scipy.fft import ifft
  4. import plotly.graph_objs as go
  5. import pandas as pd
  6. from sqlalchemy import create_engine, text
  7. import sqlalchemy
  8. import json
  9. import ast
  10. import math
  11. '''
  12. # 输入:
  13. {
  14. "ids":[12345,121212],
  15. "windCode":"xxxx",
  16. "analysisType":"xxxxx",
  17. "fmin":int(xxxx) (None),
  18. "fmax":"int(xxxx) (None),
  19. }
  20. [{id:xxxx,"time":xxx},{}]
  21. id[123456]
  22. # 通过id,读取mysql,获取数据
  23. engine = create_engine('mysql+pymysql://root:admin123456@192.168.50.235:30306/energy_data')
  24. def get_by_id(table_name,id):
  25. lastday_df_sql = f"SELECT * FROM {table_name} where id = {id} "
  26. # print(lastday_df_sql)
  27. df = pd.read_sql(lastday_df_sql, engine)
  28. return df
  29. select distinct id, timeStamp from table_name group by ids
  30. ids time
  31. 1 xxx
  32. 2 xxxx
  33. df_data = []
  34. # for id in ids:
  35. # sql_data = get_by_id('SKF001_wave',id)
  36. # df_data.append(sql_data)
  37. # print(sql_data)
  38. [df1,df2]
  39. '''
  40. '''
  41. 数据库字段:
  42. "samplingFrequency"
  43. "timeStamp"
  44. "mesureData"
  45. '''
  46. # %%
  47. # %%
  48. # 主要的类
  49. class CMSAnalyst:
  50. def __init__(self, fmin, fmax, table_name, ids):
  51. # envelope_spectrum_analysis
  52. # datas是[df1,df2,.....]
  53. self.datas = self._get_by_id(table_name,ids)
  54. self.datas = [df[['mesure_data','time_stamp','sampling_frequency','wind_turbine_number','rotational_speed','mesure_point_name']] for df in self.datas]
  55. # 只输入一个id,返回一个[df],所以拿到self.data[0]
  56. self.data_filter = self.datas[0]
  57. # print(self.data_filter)
  58. # 取数据列
  59. self.data = np.array(ast.literal_eval(self.data_filter['mesure_data'][0]))
  60. self.envelope_spectrum_m = self.data.shape[0]
  61. self.envelope_spectrum_n = 1
  62. self.fs = int(self.data_filter['sampling_frequency'].iloc[0])
  63. self.envelope_spectrum_t = np.arange(self.envelope_spectrum_m) / self.fs
  64. self.fmin = fmin if fmin is not None else 0
  65. self.fmax = fmax if fmax is not None else float('inf')
  66. self.envelope_spectrum_y = self._bandpass_filter(self.data)
  67. self.f, self.HP = self._calculate_envelope_spectrum(self.envelope_spectrum_y)
  68. self.wind_code = self.data_filter['wind_turbine_number'].iloc[0]
  69. self.rpm_Gen = self.data_filter['rotational_speed'].iloc[0]
  70. self.mesure_point_name = self.data_filter['mesure_point_name'].iloc[0]
  71. self.fn_Gen = round(self.rpm_Gen/60,2)
  72. self.CF = self.Characteristic_Frequency()
  73. print(self.CF)
  74. self.CF = pd.DataFrame(self.CF,index=[0])
  75. print(self.CF)
  76. print(self.rpm_Gen)
  77. if self.CF['type'].iloc[0] == 'bearing':
  78. n_rolls_m = self.CF['n_rolls'].iloc[0]
  79. d_rolls_m = self.CF['d_rolls'].iloc[0]
  80. D_diameter_m = self.CF['D_diameter'].iloc[0]
  81. theta_deg_m = self.CF['theta_deg'].iloc[0]
  82. print(n_rolls_m)
  83. print(d_rolls_m)
  84. print(D_diameter_m)
  85. print(theta_deg_m)
  86. self.bearing_frequencies = self.calculate_bearing_frequencies(n_rolls_m, d_rolls_m, D_diameter_m, theta_deg_m, self.rpm_Gen)
  87. print(self.bearing_frequencies)
  88. self.bearing_frequencies = pd.DataFrame(self.bearing_frequencies,index=[0])
  89. print(self.bearing_frequencies)
  90. # frequency_domain_analysis
  91. (
  92. self.frequency_domain_analysis_t,
  93. self.frequency_domain_analysis_f,
  94. self.frequency_domain_analysis_m,
  95. self.frequency_domain_analysis_mag,
  96. self.frequency_domain_analysis_Xrms,
  97. ) = self._calculate_spectrum(self.data)
  98. # time_domain_analysis
  99. self.time_domain_analysis_t = np.arange(self.data.shape[0]) / self.fs
  100. def _get_by_id(self, windcode, ids):
  101. df_res = []
  102. engine = create_engine('mysql+pymysql://root:admin123456@106.120.102.238:10336/energy_data_prod')
  103. for id in ids:
  104. table_name=windcode+'_wave'
  105. lastday_df_sql = f"SELECT * FROM {table_name} where id = {id} "
  106. # print(lastday_df_sql)
  107. df = pd.read_sql(lastday_df_sql, engine)
  108. df_res.append(df)
  109. return df_res
  110. # envelope_spectrum_analysis
  111. def _bandpass_filter(self, data):
  112. """带通滤波"""
  113. m= data.shape[0]
  114. ni = round(self.fmin * self.envelope_spectrum_m / self.fs + 1)
  115. # na = round(self.fmax * self.envelope_spectrum_m / self.fs + 1)
  116. if self.fmax == float('inf'):
  117. na = m
  118. else:
  119. na = round(self.fmax * m / self.fs + 1)
  120. col = 1
  121. y = np.zeros((self.envelope_spectrum_m, col))
  122. # for p in range(col):
  123. # print(data.shape,p)
  124. z = np.fft.fft(data)
  125. a = np.zeros(self.envelope_spectrum_m, dtype=complex)
  126. a[ni:na] = z[ni:na]
  127. a[self.envelope_spectrum_m - na + 1 : self.envelope_spectrum_m - ni + 1] = z[
  128. self.envelope_spectrum_m - na + 1 : self.envelope_spectrum_m - ni + 1
  129. ]
  130. z = np.fft.ifft(a)
  131. y[:, 0] = np.real(z)
  132. return y
  133. def _calculate_envelope_spectrum(self, y):
  134. """计算包络谱"""
  135. m, n = y.shape
  136. HP = np.zeros((m, n))
  137. col = 1
  138. for p in range(col):
  139. H = np.abs(hilbert(y[:, p] - np.mean(y[:, p])))
  140. HP[:, p] = np.abs(np.fft.fft(H - np.mean(H))) * 2 / m
  141. f = np.fft.fftfreq(m, d=1 / self.fs)
  142. return f, HP
  143. def envelope_spectrum(self):
  144. """绘制包络谱"""
  145. # 只取正频率部分
  146. positive_frequencies = self.f[: self.envelope_spectrum_m // 2]
  147. positive_HP = self.HP[: self.envelope_spectrum_m // 2, 0]
  148. x = positive_frequencies
  149. y = positive_HP
  150. title = "包络谱"
  151. xaxis = "频率(Hz)"
  152. yaxis = "加速度(m/s^2)"
  153. Xrms = np.sqrt(np.mean(y**2)) # 加速度均方根值(有效值)
  154. rpm_Gen = round(self.rpm_Gen, 2)
  155. BPFI_1X = round(self.bearing_frequencies['BPFI'].iloc[0], 2)
  156. BPFO_1X = round(self.bearing_frequencies['BPFO'].iloc[0], 2)
  157. BSF_1X = round(self.bearing_frequencies['BSF'].iloc[0], 2)
  158. FTF_1X = round(self.bearing_frequencies['FTF'].iloc[0], 2)
  159. fn_Gen = round(self.fn_Gen, 2)
  160. _3P_1X = round(self.fn_Gen, 2) * 3
  161. if self.CF['type'].iloc[0] == 'bearing':
  162. result = {
  163. "fs":self.fs,
  164. "Xrms":round(Xrms, 2),
  165. "x":list(x),
  166. "y":list(y),
  167. "title":title,
  168. "xaxis":xaxis,
  169. "yaxis":yaxis,
  170. "rpm_Gen": round(rpm_Gen, 2), # 转速r/min
  171. "BPFI": [{"Xaxis": BPFI_1X ,"val": "1BPFI"},{"Xaxis": BPFI_1X*2 ,"val": "2BPFI"},
  172. {"Xaxis": BPFI_1X*3, "val": "3BPFI"}, {"Xaxis": BPFI_1X*4, "val": "4BPFI"},
  173. {"Xaxis": BPFI_1X*5, "val": "5BPFI"}, {"Xaxis": BPFI_1X*6, "val": "6BPFI"}],
  174. "BPFO": [{"Xaxis": BPFO_1X ,"val": "1BPFO"},{"Xaxis": BPFO_1X*2 ,"val": "2BPFO"},
  175. {"Xaxis": BPFO_1X*3, "val": "3BPFO"}, {"Xaxis": BPFO_1X*4, "val": "4BPFO"},
  176. {"Xaxis": BPFO_1X*5, "val": "5BPFO"}, {"Xaxis": BPFO_1X*6, "val": "6BPFO"}],
  177. "BSF": [{"Xaxis": BSF_1X ,"val": "1BSF"},{"Xaxis": BSF_1X*2 ,"val": "2BSF"},
  178. {"Xaxis": BSF_1X*3, "val": "3BSF"}, {"Xaxis": BSF_1X*4, "val": "4BSF"},
  179. {"Xaxis": BSF_1X*5, "val": "5BSF"}, {"Xaxis": BSF_1X*6, "val": "6BSF"}],
  180. "FTF": [{"Xaxis": FTF_1X ,"val": "1FTF"},{"Xaxis": FTF_1X*2 ,"val": "2FTF"},
  181. {"Xaxis": FTF_1X*3, "val": "3FTF"}, {"Xaxis": FTF_1X*4, "val": "4FTF"},
  182. {"Xaxis": FTF_1X*5, "val": "5FTF"}, {"Xaxis": FTF_1X*6, "val": "6FTF"}],
  183. "fn_Gen":[{"Xaxis": fn_Gen ,"val": "1X"},{"Xaxis": fn_Gen*2 ,"val": "2X"},
  184. {"Xaxis": fn_Gen*3, "val": "3X"}, {"Xaxis": fn_Gen*4, "val": "4X"},
  185. {"Xaxis": fn_Gen*5, "val": "5X"}, {"Xaxis": fn_Gen*6, "val": "6X"}],
  186. "B3P":_3P_1X,
  187. }
  188. # result = json.dumps(result, ensure_ascii=False)
  189. return result
  190. # frequency_domain_analysis
  191. def _calculate_spectrum(self, data):
  192. """计算频谱"""
  193. m = data.shape[0]
  194. n = 1
  195. t = np.arange(m) / self.fs
  196. mag = np.zeros((m, n))
  197. Xrms = np.sqrt(np.mean(data**2)) # 加速度均方根值(有效值)
  198. # col=1
  199. # for p in range(col):
  200. mag = np.abs(np.fft.fft(data - np.mean(data))) * 2 / m
  201. f = np.fft.fftfreq(m, d=1 / self.fs)
  202. return t, f, m, mag, Xrms
  203. def frequency_domain(self):
  204. """绘制频域波形参数"""
  205. # 只取正频率部分
  206. positive_frequencies = self.frequency_domain_analysis_f[
  207. : self.frequency_domain_analysis_m // 2
  208. ]
  209. positive_mag = self.frequency_domain_analysis_mag[
  210. : self.frequency_domain_analysis_m // 2
  211. ]
  212. x = positive_frequencies
  213. y = positive_mag
  214. title = "频域信号"
  215. xaxis = "频率(Hz)"
  216. yaxis = "加速度(m/s^2)"
  217. Xrms = self.frequency_domain_analysis_Xrms
  218. rpm_Gen = round(self.rpm_Gen, 2)
  219. BPFI_1X = round(self.bearing_frequencies['BPFI'].iloc[0], 2)
  220. BPFO_1X = round(self.bearing_frequencies['BPFO'].iloc[0], 2)
  221. BSF_1X = round(self.bearing_frequencies['BSF'].iloc[0], 2)
  222. FTF_1X = round(self.bearing_frequencies['FTF'].iloc[0], 2)
  223. fn_Gen = round(self.fn_Gen, 2)
  224. _3P_1X = round(self.fn_Gen, 2) * 3
  225. if self.CF['type'].iloc[0] == 'bearing':
  226. result = {
  227. "fs":self.fs,
  228. "Xrms":round(Xrms, 2),
  229. "x":list(x),
  230. "y":list(y),
  231. "title":title,
  232. "xaxis":xaxis,
  233. "yaxis":yaxis,
  234. "rpm_Gen": round(rpm_Gen, 2), # 转速r/min
  235. "BPFI": [{"Xaxis": BPFI_1X ,"val": "1BPFI"},{"Xaxis": BPFI_1X*2 ,"val": "2BPFI"},
  236. {"Xaxis": BPFI_1X*3, "val": "3BPFI"}, {"Xaxis": BPFI_1X*4, "val": "4BPFI"},
  237. {"Xaxis": BPFI_1X*5, "val": "5BPFI"}, {"Xaxis": BPFI_1X*6, "val": "6BPFI"}],
  238. "BPFO": [{"Xaxis": BPFO_1X ,"val": "1BPFO"},{"Xaxis": BPFO_1X*2 ,"val": "2BPFO"},
  239. {"Xaxis": BPFO_1X*3, "val": "3BPFO"}, {"Xaxis": BPFO_1X*4, "val": "4BPFO"},
  240. {"Xaxis": BPFO_1X*5, "val": "5BPFO"}, {"Xaxis": BPFO_1X*6, "val": "6BPFO"}],
  241. "BSF": [{"Xaxis": BSF_1X ,"val": "1BSF"},{"Xaxis": BSF_1X*2 ,"val": "2BSF"},
  242. {"Xaxis": BSF_1X*3, "val": "3BSF"}, {"Xaxis": BSF_1X*4, "val": "4BSF"},
  243. {"Xaxis": BSF_1X*5, "val": "5BSF"}, {"Xaxis": BSF_1X*6, "val": "6BSF"}],
  244. "FTF": [{"Xaxis": FTF_1X ,"val": "1FTF"},{"Xaxis": FTF_1X*2 ,"val": "2FTF"},
  245. {"Xaxis": FTF_1X*3, "val": "3FTF"}, {"Xaxis": FTF_1X*4, "val": "4FTF"},
  246. {"Xaxis": FTF_1X*5, "val": "5FTF"}, {"Xaxis": FTF_1X*6, "val": "6FTF"}],
  247. "fn_Gen":[{"Xaxis": fn_Gen ,"val": "1X"},{"Xaxis": fn_Gen*2 ,"val": "2X"},
  248. {"Xaxis": fn_Gen*3, "val": "3X"}, {"Xaxis": fn_Gen*4, "val": "4X"},
  249. {"Xaxis": fn_Gen*5, "val": "5X"}, {"Xaxis": fn_Gen*6, "val": "6X"}],
  250. "B3P":_3P_1X,
  251. }
  252. result = json.dumps(result, ensure_ascii=False)
  253. return result
  254. # time_domain_analysis
  255. def time_domain(self):
  256. """绘制时域波形参数"""
  257. x = self.time_domain_analysis_t
  258. y = self.data
  259. rpm_Gen =self.rpm_Gen
  260. title = "时间域信号"
  261. xaxis = "时间(s)"
  262. yaxis = "加速度(m/s^2)"
  263. # 图片右侧统计量
  264. mean_value = np.mean(y)#平均值
  265. max_value = np.max(y)#最大值
  266. min_value = np.min(y)#最小值
  267. Xrms = np.sqrt(np.mean(y**2)) # 加速度均方根值(有效值)
  268. Xp = (max_value - min_value) / 2 # 峰值(单峰最大值) # 峰值
  269. Xpp=max_value-min_value#峰峰值
  270. Cf = Xp / Xrms # 峰值指标
  271. Sf = Xrms / mean_value # 波形指标
  272. If = Xp / np.mean(np.abs(y)) # 脉冲指标
  273. Xr = np.mean(np.sqrt(np.abs(y))) ** 2 # 方根幅值
  274. Ce = Xp / Xr # 裕度指标
  275. # 计算每个数据点的绝对值减去均值后的三次方,并求和
  276. sum_abs_diff_cubed_3 = np.mean((np.abs(y) - mean_value) ** 3)
  277. # 计算偏度指标
  278. Cw = sum_abs_diff_cubed_3 / (Xrms**3)
  279. # 计算每个数据点的绝对值减去均值后的四次方,并求和
  280. sum_abs_diff_cubed_4 = np.mean((np.abs(y) - mean_value) ** 4)
  281. # 计算峭度指标
  282. Cq = sum_abs_diff_cubed_4 / (Xrms**4)
  283. result = {
  284. "x":list(x),
  285. "y":list(y),
  286. "title":title,
  287. "xaxis":xaxis,
  288. "yaxis":yaxis,
  289. "fs":self.fs,
  290. "Xrms":round(Xrms, 2),#有效值
  291. "mean_value":round(mean_value, 2),# 均值
  292. "max_value":round(max_value, 2),# 最大值
  293. "min_value":round(min_value, 2), # 最小值
  294. "Xp":round(Xp, 2),# 峰值
  295. "Xpp":round(Xpp, 2),# 峰峰值
  296. "Cf":round(Cf, 2),# 峰值指标
  297. "Sf":round(Sf, 2),# 波形因子
  298. "If":round(If, 2),# 脉冲指标
  299. "Ce":round(Ce, 2),# 裕度指标
  300. "Cw":round(Cw, 2) ,# 偏度指标
  301. "Cq":round(Cq, 2) ,# 峭度指标
  302. "rpm_Gen": round(rpm_Gen, 2), # 转速r/min
  303. }
  304. result = json.dumps(result, ensure_ascii=False)
  305. return result
  306. # trend_analysis
  307. def trend_analysis(self):
  308. all_stats = []
  309. # 定义积分函数
  310. def _integrate(data, dt):
  311. return np.cumsum(data) * dt
  312. # 定义计算统计指标的函数
  313. def _calculate_stats(data):
  314. mean_value = np.mean(data)
  315. max_value = np.max(data)
  316. min_value = np.min(data)
  317. Xrms = np.sqrt(np.mean(data**2)) # 加速度均方根值(有效值)
  318. # Xrms = filtered_acceleration_rms # 加速度均方根值(有效值)
  319. Xp = (max_value - min_value) / 2 # 峰值(单峰最大值) # 峰值
  320. Cf = Xp / Xrms # 峰值指标
  321. Sf = Xrms / mean_value # 波形指标
  322. If = Xp / np.mean(np.abs(data)) # 脉冲指标
  323. Xr = np.mean(np.sqrt(np.abs(data))) ** 2 # 方根幅值
  324. Ce = Xp / Xr # 裕度指标
  325. # 计算每个数据点的绝对值减去均值后的三次方,并求和
  326. sum_abs_diff_cubed_3 = np.mean((np.abs(data) - mean_value) ** 3)
  327. # 计算偏度指标
  328. Cw = sum_abs_diff_cubed_3 / (Xrms**3)
  329. # 计算每个数据点的绝对值减去均值后的四次方,并求和
  330. sum_abs_diff_cubed_4 = np.mean((np.abs(data) - mean_value) ** 4)
  331. # 计算峭度指标
  332. Cq = sum_abs_diff_cubed_4 / (Xrms**4)
  333. #
  334. return {
  335. "fs":self.fs,#采样频率
  336. "Mean": round(mean_value, 2),#平均值
  337. "Max": round(max_value, 2),#最大值
  338. "Min": round(min_value, 2),#最小值
  339. "Xrms": round(Xrms, 2),#有效值
  340. "Xp": round(Xp, 2),#峰值
  341. "If": round(If, 2), # 脉冲指标
  342. "Cf": round(Cf, 2),#峰值指标
  343. "Sf": round(Sf, 2),#波形指标
  344. "Ce": round(Ce, 2),#裕度指标
  345. "Cw": round(Cw, 2) ,#偏度指标
  346. "Cq": round(Cq, 2),#峭度指标
  347. #velocity_rms :速度有效值
  348. #time_stamp:时间戳
  349. }
  350. for data in self.datas:
  351. fs=int(self.data_filter['sampling_frequency'].iloc[0])
  352. dt = 1 / fs
  353. time_stamp=data['time_stamp'][0]
  354. print(time_stamp)
  355. data=np.array(ast.literal_eval(data['mesure_data'][0]))
  356. velocity = _integrate(data, dt)
  357. velocity_rms = np.sqrt(np.mean(velocity**2))
  358. stats = _calculate_stats(data)
  359. stats["velocity_rms"] = round(velocity_rms, 2)#速度有效值
  360. stats["time_stamp"] = str(time_stamp)#时间戳
  361. all_stats.append(stats)
  362. # df = pd.DataFrame(all_stats)
  363. all_stats = json.dumps(all_stats, ensure_ascii=False)
  364. return all_stats
  365. def Characteristic_Frequency(self):
  366. """提取轴承、齿轮等参数"""
  367. # 1、从测点名称中提取部件名称(计算特征频率的部件)
  368. str1 = self.mesure_point_name
  369. str2 = ["main_bearing", "front_main_bearing", "rear_main_bearing", "generator_non_drive_end"]
  370. for str in str2:
  371. if str in str1:
  372. parts = str
  373. if parts == "front_main_bearing":
  374. parts = "front_bearing"
  375. elif parts == "rear_main_bearing":
  376. parts = "rear_bearing"
  377. print(parts)
  378. # 2、连接233的数据库'energy_show',从表'wind_engine_group'查找风机编号'engine_code'对应的机型编号'mill_type_code'
  379. engine_code = self.wind_code
  380. Engine2 = create_engine('mysql+pymysql://admin:admin123456@106.120.102.238:16306/energy_show')
  381. df_sql2 = f"SELECT * FROM {'wind_engine_group'} where engine_code = {'engine_code'} "
  382. df2 = pd.read_sql(df_sql2, Engine2)
  383. mill_type_code = df2['mill_type_code'].iloc[0]
  384. print(mill_type_code)
  385. # 3、从表'unit_bearings'中通过机型编号'mill_type_code'查找部件'brand'、'model'的参数信息
  386. Engine3 = create_engine('mysql+pymysql://admin:admin123456@106.120.102.238:16306/energy_show')
  387. df_sql3 = f"SELECT * FROM {'unit_bearings'} where mill_type_code = {'mill_type_code'} "
  388. df3 = pd.read_sql(df_sql3, Engine3)
  389. brand = 'front_bearing' + '_brand' # parts代替'front_bearing'
  390. model = 'front_bearing' + '_model' # parts代替'front_bearing'
  391. print(brand)
  392. _brand = df3[brand].iloc[0]
  393. _model = df3[model].iloc[0]
  394. print(_brand)
  395. print(_model)
  396. # 4、从表'unit_dict_brand_model'中通过'_brand'、'_model'查找部件的参数信息
  397. Engine4 = create_engine('mysql+pymysql://admin:admin123456@106.120.102.238:16306/energy_show')
  398. df_sql4 = f"SELECT * FROM unit_dict_brand_model where manufacture = %s AND model_number = %s"
  399. params = [(_brand, _model)]
  400. df4 = pd.read_sql(df_sql4, Engine4, params=params)
  401. if 'bearing' in parts:
  402. n_rolls = df4['rolls_number'].iloc[0]
  403. d_rolls = df4['rolls_diameter'].iloc[0]
  404. D_diameter = df4['circle_diameter'].iloc[0]
  405. theta_deg = df4['theta_deg'].iloc[0]
  406. result = {
  407. "type":'bearing',
  408. "n_rolls":round(n_rolls, 2),
  409. "d_rolls":round(d_rolls, 2),
  410. "D_diameter":round(D_diameter, 2),
  411. "theta_deg":round(theta_deg, 2),
  412. }
  413. # result = json.dumps(result, ensure_ascii=False)
  414. return result
  415. def calculate_bearing_frequencies(self, n, d, D, theta_deg, rpm):
  416. """
  417. 计算轴承各部件特征频率
  418. 参数:
  419. n (int): 滚动体数量
  420. d (float): 滚动体直径(单位:mm)
  421. D (float): 轴承节圆直径(滚动体中心圆直径,单位:mm)
  422. theta_deg (float): 接触角(单位:度)
  423. rpm (float): 转速(转/分钟)
  424. 返回:
  425. dict: 包含各特征频率的字典(单位:Hz)
  426. """
  427. # 转换角度为弧度
  428. theta = math.radians(theta_deg)
  429. # 转换直径单位为米(保持单位一致性,实际计算中比值抵消单位影响)
  430. # 注意:由于公式中使用的是比值,单位可以保持mm不需要转换
  431. ratio = d / D
  432. # 基础频率计算(转/秒)
  433. f_r = rpm / 60.0
  434. # 计算各特征频率
  435. BPFI = n / 2 * (1 + ratio * math.cos(theta)) * f_r # 内圈故障频率
  436. BPFO = n / 2 * (1 - ratio * math.cos(theta)) * f_r # 外圈故障频率
  437. BSF = (D / (2 * d)) * (1 - (ratio ** 2) * (math.cos(theta) ** 2)) * f_r # 滚动体故障频率
  438. FTF = 0.5 * (1 - ratio * math.cos(theta)) * f_r # 保持架故障频率
  439. return {
  440. "BPFI": round(BPFI, 2),
  441. "BPFO": round(BPFO, 2),
  442. "BSF": round(BSF, 2),
  443. "FTF": round(FTF, 2),
  444. }
  445. if __name__ == "__main__":
  446. # table_name = "SKF001_wave"
  447. # ids = [67803,67804]
  448. # fmin, fmax = None, None
  449. cms = CMSAnalyst(fmin, fmax,table_name,ids)
  450. time_domain = cms.time_domain()
  451. # print(time_domain)
  452. '''
  453. trace = go.Scatter(
  454. x=time_domain['x'],
  455. y=time_domain['y'],
  456. mode="lines",
  457. name=time_domain['title'],
  458. )
  459. layout = go.Layout(
  460. title= time_domain['title'],
  461. xaxis=dict(title=time_domain["xaxis"]),
  462. yaxis=dict(title=time_domain["yaxis"]),
  463. )
  464. fig = go.Figure(data=[trace], layout=layout)
  465. fig.show()
  466. '''
  467. # data_path_lsit = ["test1.csv", "test2.csv"]
  468. # trend_analysis_test = cms.trend_analysis(data_path_lsit, fmin, fmax)
  469. # print(trend_analysis_test)