import numpy as np import pandas as pd from sklearn.neighbors import BallTree from typing import Dict, List, Optional, Union from functools import lru_cache class HealthAssessor: def __init__(self): self.subsystem_config = { # 发电机 'generator': { # 双馈 'dfig': { 'fixed': ['generator_winding1_temperature', 'generator_winding2_temperature', 'generator_winding3_temperature', 'generatordrive_end_bearing_temperature', 'generatornon_drive_end_bearing_temperature'], }, # 直驱 'direct': { 'fixed': ['generator_winding1_temperature', 'generator_winding2_temperature', 'generator_winding3_temperature', 'main_bearing_temperature'], } }, # 机舱系统 'nacelle': { 'fixed': ['front_back_vibration_of_the_cabin', 'side_to_side_vibration_of_the_cabin', 'cabin_position', 'cabin_temperature'], }, # 电网环境 'grid': { 'fixed': ['reactive_power', 'active_power', 'grid_a_phase_current', 'grid_b_phase_current', 'grid_c_phase_current'], }, # 传动系统 'drive_train': { 'fixed': ['main_bearing_temperature'], 'keywords': [ {'include': ['gearbox', 'temperature'], 'exclude': [], 'min_count': 2}, ] } } # 嵌入源代码的MSET实现 self.mset = self._create_mset_core() def _create_mset_core(self): """创建MSET核心计算模块""" class MSETCore: def __init__(self): self.matrixD = None self.normalDataBallTree = None self.healthyResidual = None def calcSimilarity(self, x, y): """优化后的相似度计算""" diff = np.array(x) - np.array(y) return 1/(1 + np.sqrt(np.sum(diff**2))) def genDLMatrix(self, trainDataset, dataSize4D=60, dataSize4L=5): """优化矩阵生成过程""" m, n = trainDataset.shape # 快速选择极值点 min_indices = np.argmin(trainDataset, axis=0) max_indices = np.argmax(trainDataset, axis=0) unique_indices = np.unique(np.concatenate([min_indices, max_indices])) self.matrixD = trainDataset[unique_indices].copy() # 快速填充剩余点 remaining_indices = np.setdiff1d(np.arange(m), unique_indices) np.random.shuffle(remaining_indices) needed = max(0, dataSize4D - len(unique_indices)) if needed > 0: self.matrixD = np.vstack([self.matrixD, trainDataset[remaining_indices[:needed]]]) # 使用与源代码一致的BallTree参数 self.normalDataBallTree = BallTree( self.matrixD, leaf_size=4, metric=lambda i,j: 1-self.calcSimilarity(i,j) # 自定义相似度 ) # 使用所有数据计算残差 self.healthyResidual = self.calcResidualByLocallyWeightedLR(trainDataset) return 0 def calcResidualByLocallyWeightedLR(self, newStates): """优化残差计算""" if len(newStates.shape) == 1: newStates = newStates.reshape(-1, 1) dist, iList = self.normalDataBallTree.query( newStates, k=min(10, len(self.matrixD)), return_distance=True ) weights = 1/(dist + 1e-5) weights /= weights.sum(axis=1)[:, np.newaxis] est_X = np.sum(weights[:, :, np.newaxis] * self.matrixD[iList[0]], axis=1) return est_X - newStates def calcSPRT(self, newsStates, feature_weight, alpha=0.1, beta=0.1, decisionGroup=1): """优化SPRT计算""" stateResidual = self.calcResidualByLocallyWeightedLR(newsStates) weightedStateResidual = np.dot(stateResidual, feature_weight) weightedHealthyResidual = np.dot(self.healthyResidual, feature_weight) mu0 = np.mean(weightedHealthyResidual) sigma0 = np.std(weightedHealthyResidual) # 向量化计算 n = len(newsStates) if n < decisionGroup: return [50] # 中性值 rolling_mean = np.convolve(weightedStateResidual, np.ones(decisionGroup)/decisionGroup, 'valid') si = (rolling_mean - mu0) * (rolling_mean + mu0 - 2*mu0) / (2*sigma0**2) lowThres = np.log(beta/(1-alpha)) highThres = np.log((1-beta)/alpha) si = np.clip(si, lowThres, highThres) si = np.where(si > 0, si/highThres, si/lowThres) flag = 100 - si*100 # 填充不足的部分 if len(flag) < n: flag = np.pad(flag, (0, n-len(flag)), mode='edge') return flag.tolist() def CRITIC_prepare(self, data, flag=1): """标准化处理""" data = data.astype(float) numeric_cols = data.select_dtypes(include=[np.number]).columns #需要确认哪些指标是正向标准化 哪些是负向标准化 negative_cols = [col for col in numeric_cols if any(kw in col for kw in ['temperature'])] positive_cols = list(set(numeric_cols) - set(negative_cols)) # 负向标准化 if negative_cols: max_val = data[negative_cols].max() min_val = data[negative_cols].min() data[negative_cols] = (max_val - data[negative_cols]) / (max_val - min_val).replace(0, 1e-5) # 正向标准化 if positive_cols: max_val = data[positive_cols].max() min_val = data[positive_cols].min() data[positive_cols] = (data[positive_cols] - min_val) / (max_val - min_val).replace(0, 1e-5) return data def CRITIC(self, data): """CRITIC权重计算""" data_norm = self.CRITIC_prepare(data.copy()) std = data_norm.std(ddof=0).clip(lower=0.01) corr = np.abs(np.corrcoef(data_norm.T)) np.fill_diagonal(corr, 0) conflict = np.sum(1 - corr, axis=1) info = std * conflict weights = info / info.sum() return pd.Series(weights, index=data.columns) def ahp(self, matrix): """AHP权重计算""" eigenvalue, eigenvector = np.linalg.eig(matrix) max_idx = np.argmax(eigenvalue) weight = eigenvector[:, max_idx].real return weight / weight.sum(), eigenvalue[max_idx].real return MSETCore() def assess_turbine(self, engine_code, data, mill_type, wind_turbine_name): """评估单个风机 """ results = { "engine_code": engine_code, "wind_turbine_name": wind_turbine_name, "mill_type": mill_type, "total_health_score": None, "subsystems": {}, "assessed_subsystems": [] } # 各子系统评估 subsystems_to_assess = [ ('generator', self.subsystem_config['generator'][mill_type], 1), ('nacelle', self.subsystem_config['nacelle'],1), ('grid', self.subsystem_config['grid'], 1), ('drive_train', self.subsystem_config['drive_train'] if mill_type == 'dfig' else None,1) ] for subsystem, config, min_features in subsystems_to_assess: if config is None: continue features = self._get_subsystem_features(config, data) # 功能1:无论特征数量是否足够都输出结果 if len(features) >= min_features: assessment = self._assess_subsystem(data[features]) else: assessment = { 'health_score': -1, # 特征不足时输出'-' 'weights': {}, 'message': f'Insufficient features (required {min_features}, got {len(features)})' } # 功能3:删除features内容 if 'features' in assessment: del assessment['features'] results["subsystems"][subsystem] = assessment # 计算整机健康度(使用新字段名) if results["subsystems"]: # 只计算健康值为数字的子系统 valid_subsystems = [ k for k, v in results["subsystems"].items() if isinstance(v['health_score'], (int, float)) and v['health_score'] >= 0 ] if valid_subsystems: weights = self._get_subsystem_weights(valid_subsystems) health_scores = [results["subsystems"][sys]['health_score'] for sys in valid_subsystems] results["total_health_score"] = float(np.dot(health_scores, weights)) results["assessed_subsystems"] = valid_subsystems return results def _get_all_possible_features(self,assessor, mill_type, available_columns): """ 获取所有可能的特征列(基于实际存在的列) 参数: assessor: HealthAssessor实例 mill_type: 机型类型 available_columns: 数据库实际存在的列名列表 """ features = [] available_columns_lower = [col.lower() for col in available_columns] # 不区分大小写匹配 for subsys_name, subsys_config in assessor.subsystem_config.items(): # 处理子系统配置 if subsys_name == 'generator': config = subsys_config.get(mill_type, {}) elif subsys_name == 'drive_train' and mill_type != 'dfig': continue else: config = subsys_config # 处理固定特征 if 'fixed' in config: for f in config['fixed']: if f in available_columns: features.append(f) # 处理关键词特征 if 'keywords' in config: for rule in config['keywords']: matched = [] include_kws = [kw.lower() for kw in rule['include']] exclude_kws = [ex.lower() for ex in rule.get('exclude', [])] for col in available_columns: col_lower = col.lower() # 检查包含关键词 include_ok = all(kw in col_lower for kw in include_kws) # 检查排除关键词 exclude_ok = not any(ex in col_lower for ex in exclude_kws) if include_ok and exclude_ok: matched.append(col) if len(matched) >= rule.get('min_count', 1): features.extend(matched) return list(set(features)) # 去重 def _get_subsystem_features(self, config: Dict, data: pd.DataFrame) -> List[str]: """最终版特征获取方法""" available_features = [] # 固定特征检查(要求至少10%非空) if 'fixed' in config: for f in config['fixed']: if f in data.columns and data[f].notna().mean() > 0.1: available_features.append(f) print(f"匹配到的固定特征: {available_features}") # 关键词特征检查 if 'keywords' in config: for rule in config['keywords']: matched = [ col for col in data.columns if all(kw.lower() in col.lower() for kw in rule['include']) and not any(ex.lower() in col.lower() for ex in rule.get('exclude', [])) and data[col].notna().mean() > 0.1 # 数据有效性检查 ] if len(matched) >= rule.get('min_count', 1): available_features.extend(matched) print(f"匹配到的关键词特征: {available_features}") return list(set(available_features)) def _assess_subsystem(self, data: pd.DataFrame) -> Dict: """评估子系统(与源代码逻辑完全一致)""" # 数据清洗 clean_data = data.dropna() if len(clean_data) < 20: # 数据量不足 return {'health_score': -1, 'weights': {}, 'features': list(data.columns), 'message': 'Insufficient data'} try: # 标准化 normalized_data = self.mset.CRITIC_prepare(clean_data) # 计算权重 weights = self.mset.CRITIC(normalized_data) # MSET评估 health_score = self._run_mset_assessment(normalized_data.values, weights.values) return { 'health_score': float(health_score), 'weights': weights.to_dict(), 'features': list(data.columns) } except Exception as e: return {'health_score': -1, 'weights': {}, 'features': list(data.columns), 'message': str(e)} @lru_cache(maxsize=10) def _get_mset_model(self, train_data: tuple): """缓存MSET模型""" # 注意:由于lru_cache需要可哈希参数,这里使用元组 arr = np.array(train_data) model = self._create_mset_core() model.genDLMatrix(arr) return model def _run_mset_assessment(self, data: np.ndarray, weights: np.ndarray) -> float: """执行MSET评估""" # 分割训练集和测试集 split_idx = len(data) // 2 train_data = data[:split_idx] test_data = data[split_idx:] # 使用缓存模型 model = self._get_mset_model(tuple(map(tuple, train_data))) # 转换为可哈希的元组 # 计算SPRT标志 flags = model.calcSPRT(test_data, weights) return np.mean(flags) def _get_subsystem_weights(self, subsystems: List[str]) -> np.ndarray: """生成等权重的子系统权重向量""" n = len(subsystems) if n == 0: return np.array([]) # 直接返回等权重向量 return np.ones(n) / n # def _get_subsystem_weights(self, subsystems: List[str]) -> np.ndarray: # """动态生成子系统权重矩阵""" # n = len(subsystems) # if n == 0: # return np.array([]) # # 定义子系统优先级 # priority_order = ['generator', 'drive_train', 'nacelle', 'grid'] # priority = {sys: idx for idx, sys in enumerate(priority_order) if sys in subsystems} # # 构建比较矩阵 # matrix = np.ones((n, n)) # for i in range(n): # for j in range(n): # if subsystems[i] in priority and subsystems[j] in priority: # if priority[subsystems[i]] < priority[subsystems[j]]: # matrix[i,j] = 3 # elif priority[subsystems[i]] > priority[subsystems[j]]: # matrix[i,j] = 1/3 # # AHP计算权重 # weights, _ = self.mset.ahp(matrix) # return weights