123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418 |
- # @Time : 2019-6-19
- # @Author : wilbur.cheng@SKF
- # @FileName: baseMSET.py
- # @Software: a package in skf anomaly detection library to realize multivariate state estimation technique
- # this package has included all the functions used in MSET, similarity calculation, state memory matrix D,
- # normal state matrix L, residual calculation, and the basic SPRT (Sequential Probability Ratio Test)
- # function for binary hypothesis testing.
- #
- import numpy as np
- import pandas as pd
- import matplotlib.pyplot as plt
- from sklearn.neighbors import BallTree
- import openpyxl
- import time
- #from scikit-learn.neighbors import BallTree
- class MSET():
- matrixD = None
- matrixL = None
- healthyResidual = None
- normalDataBallTree = None
- def __init__(self):
- self.model = None
- def calcSimilarity(self, x, y, m = 'euc'):
- """
- Calcualte the similartity of two feature vector
- :param x: one of input feature list
- :param y: one of input feature list
- :param m: method of the similarity calculation method, default is the Eucilidean distance named 'euc';
- a city block distance function is used when m set to "cbd'.
- :return: the two feature similarity, float, range (0,1)
- """
- if (len(x) != len(y)):
- return 0
- if (m == 'cbd'):
- dSimilarity = [1/(1+np.abs(p-q)) for p,q in zip(x,y)]
- dSimilarity = np.sum(dSimilarity)/len(x)
- else:
- dSimilarity = [np.power(p-q,2) for p, q in zip(x, y)]
- dSimilarity = 1/(1+np.sqrt(np.sum(dSimilarity)))
- return dSimilarity
- def genDLMatrix(self, trainDataset, dataSize4D=100, dataSize4L=50):
- """
- automatically generate the D and L matrix from training data set, assuming the training data set is all normal
- state data.
- :param trainDataset: 2D array, [count of data, length of feature]
- :param dataSize4D: minimized count of state for matrix D
- :param dataSize4L: minimized count of state for matrix L
- :return: 0 if successful, -1 if fail
- """
- [m,n] = np.shape(trainDataset)
- if m < dataSize4D + dataSize4L:
- print('training dataset is too small to generate the matrix D and L')
- return -1
- self.matrixD = []
- selectIndex4D = []
- # Step 1: add all the state with minimum or maximum value in each feature into Matrix D
- for i in range(0, n):
- feature_i = trainDataset[:,i]
- minIndex = np.argmin(feature_i)
- maxIndex = np.argmax(feature_i)
- self.matrixD.append(trainDataset[minIndex, :].tolist())
- selectIndex4D.append(minIndex)
- self.matrixD.append(trainDataset[maxIndex, :].tolist())
- selectIndex4D.append(maxIndex)
- # Step 2: iteratively add the state with the maximum average distance to the states in selected matrixD
- while(1):
- if (len(selectIndex4D) >= dataSize4D):
- break
- # Get the free state list
- freeStateList = list(set(np.arange(0, len(trainDataset))) - set(selectIndex4D))
- # Calculate the average dist of each state in free to selected state in matrix D
- distList = []
- for i in freeStateList:
- tmpState = trainDataset[i]
- tmpDist = [1-self.calcSimilarity(x, tmpState) for x in self.matrixD]
- distList.append(np.mean(tmpDist))
- # select the free state with largest average distance to states in matrixD, and update matrixD
- selectId = freeStateList[distList.index(np.max(distList))]
- self.matrixD.append(trainDataset[selectId, :].tolist())
- selectIndex4D.append(selectId)
- #format matrixD from list to array
- self.matrixD = np.array(self.matrixD)
- self.normalDataBallTree = BallTree(self.matrixD, leaf_size=4, metric = lambda i,j: 1-self.calcSimilarity(i,j))
- # Step 3. select remaining state for matrix L
- #index4L = list(set(np.arange(0, len(trainDataset))) - set(selectIndex4D))
- #self.matrixL = trainDataset[index4L, :]
- # consider the limited dataset, using all the train data to matrix L
- self.matrixL = trainDataset
- # Calculate the healthy Residual from matrix L
- lamdaRatio = 1e-3
- [m, n] = np.shape(self.matrixD)
- self.DDSimilarity = np.array([[1-self.calcSimilarity(x,y) for x in self.matrixD] for y in self.matrixD] + lamdaRatio*np.eye(n))
- self.DDSimilarity = 1/self.DDSimilarity
- #self.healthyResidual = self.calcResidual(self.matrixL)
- self.healthyResidual = self.calcResidualByLocallyWeightedLR(self.matrixL)
- return 0
- def calcResidualByLocallyWeightedLR(self, newStates):
- """
- find the K-nearest neighbors for each input state, then calculate the estimated state by locally weighted average.
- :param newStates: input states list
- :return: residual R_x
- """
- [m,n] = np.shape(newStates)
- est_X = []
- # print(newStates)
- for x in newStates:
- (dist, iList) = self.normalDataBallTree.query([x], 20, return_distance=True)
- weight = 1/(dist[0]+1e-1)
- weight = weight/sum(weight)
- eState = np.sum([w*self.matrixD[i] for w,i in zip(weight, iList[0])])
- est_X.append(eState)
- est_X = np.reshape(est_X, (len(est_X),1))
- # print(est_X)
- # print(newStates)
- return est_X - newStates
- def calcStateResidual(self, newsStates):
- stateResidual = self.calcResidualByLocallyWeightedLR(newsStates)
- return stateResidual
- def calcSPRT(self, newsStates, feature_weight, alpha=0.1, beta=0.1, decisionGroup=5):
- """
- anomaly detection based Wald's SPRT algorithm, refer to A.Wald, Sequential Analysis,Wiley, New York, NY, USA, 1947
- :param newsStates: input states list
- :param feature_weight: the important weight for each feature, Normalized and Nonnegative
- :param alpha: prescribed false alarm rate, 0 < alpha < 1
- :param beta: prescribed miss alarm rate, 0 < beta < 1
- :param decisionGroup: length of the test sample when the decision is done
- :return: anomaly flag for each group of states, 1:anomaly, -1:normal, (-1:1): unable to decision
- """
- # Step 1. transfer the raw residual vector to dimension reduced residual using feature weight
- #stateResidual = self.calcResidual(newsStates)
- stateResidual = self.calcResidualByLocallyWeightedLR(newsStates)
- # print(stateResidual)
- weightedStateResidual = [np.dot(x, feature_weight) for x in stateResidual]
- # print(weightedStateResidual)
- weightedHealthyResidual = [np.dot(x, feature_weight) for x in self.healthyResidual]
- '''
- plt.subplot(211)
- plt.plot(weightedHealthyResidual)
- plt.xlabel('Sample index')
- plt.ylabel('Healthy State Residual')
- plt.subplot(212)
- plt.plot(weightedStateResidual)
- plt.xlabel('Sample index')
- plt.ylabel('All State Residual')
- plt.show()
- '''
- # Calculate the distribution of health state residual
- mu0 = np.mean(weightedHealthyResidual)
- sigma0 = np.std(weightedHealthyResidual)
- #sigma1 = np.std(weightedStateResidual)
- lowThres = np.log(beta/(1-alpha))
- highThres = np.log((1-beta)/alpha)
- flag = []
- for i in range(0, len(newsStates)-decisionGroup+1):
- # For each group to calculate the new state residual distribution
- # Then check the hypothesis testing results
- mu1 = np.mean(weightedStateResidual[i:i+decisionGroup])
- si = np.sum(weightedStateResidual[i:i+decisionGroup])*(mu1-mu0)/sigma0**2 - decisionGroup*(mu1**2-mu0**2)/(2*sigma0**2)
- if (si > highThres):
- si = highThres
- if (si < lowThres):
- si = lowThres
- if (si > 0):
- si = si/highThres
- if (si < 0):
- si = si/lowThres
- si = 100-si*100
- flag.append(si)
- return flag
- def CRITIC_prepare(self, data, flag=1): # 计算权重前的数据预处理
- '''
- :param data: 输入数据,类型是DataFrame
- :param flag: flag=0特征正向归一化,flag=1特征负向归一化
- :return:返回 DataFrame数据
- '''
- data_columns = data.columns.values
- maxnum = np.max(data, axis=0)
- minnum = np.min(data, axis=0)
- if flag == 0: # 正向指标归一化计算
- Y = (data - minnum) * 1.0 / (maxnum - minnum)
- if flag == 1: # 负向指标归一化计算
- Y = (maxnum - data) / (maxnum - minnum)
- # 对ln0处理
- Y0 = np.array(Y * 1.0)
- Y0[np.where(Y0 == 0)] = 0.00001
- Y0 = pd.DataFrame(Y0, columns=data_columns)
- return Y0
- def CRITIC(self, data): # CRITIC客观法计算子系统中各测点的权重
- '''
- :param data: 归一化预处理之后的DataFrame数据
- :return: 返回权重Series以及按指标排序后的得分项
- '''
- n, m = data.shape
- s = np.std(data, axis=0)
- r = np.corrcoef(data, rowvar=False)
- a = np.sum(1 - r, axis=1)
- c = s * a
- w = c / np.sum(c)
- # score = np.round(np.sum(data * w, axis=1), 6)
- # data['score'] = score
- # data.sort_values(by=['score'], ascending=False, inplace=True)
- return w
- def calcHealthy(self, df_data): # 计算子系统的健康度
- cols = df_data.columns
- df_data[cols] = df_data[cols].apply(pd.to_numeric, errors='coerce')
- df_data = df_data.dropna() # 删除空行和非数字项
- W_prepare_data = self.CRITIC_prepare(df_data)
- Weights_data = self.CRITIC(W_prepare_data)
- df_data_values = df_data.values
- df_data_values = np.array(df_data_values)
- [m, n] = np.shape(df_data_values)
- # Residual = []
- flag_Spart_data = []
- for i in range(0, n):
- df_data_i = df_data_values[:, i]
- trainDataSet_data = df_data_i[0:len(df_data_i) // 2]
- testDataSet_data = df_data_i[len(df_data_i) // 2 + 1:]
- trainDataSet_data = np.reshape(trainDataSet_data, (len(trainDataSet_data), 1))
- testDataSet_data = np.reshape(testDataSet_data, (len(testDataSet_data), 1))
- self.genDLMatrix(trainDataSet_data, 60, 5)
- # stateResidual = self.calcStateResidual(testDataSet_data)
- flag_data = self.calcSPRT(testDataSet_data, np.array(1), decisionGroup=1)
- # Residual.append(stateResidual)
- flag_Spart_data.append(flag_data)
- # weights = np.array([1/3, 1/3, 1/3])
- W_data = np.array(Weights_data)
- W_data = W_data.reshape(-1, 1)
- flag_Spart_data = np.array(flag_Spart_data)
- flag_Spart_data = flag_Spart_data.T
- Score_data = np.dot(flag_Spart_data, W_data)
- Health_data = np.mean(Score_data)
- return Weights_data, Health_data
- def ahp(self, matrix): #层次分析法ahp(主观)计算风机各子系统的权重
- # 计算特征值和特征向量
- eigenvalue, eigenvector = np.linalg.eig(matrix)
- # 提取最大特征值对应的特征向量,并归一化
- max_eigenvalue_index = np.argmax(eigenvalue)
- max_eigenvalue = eigenvalue[max_eigenvalue_index]
- weight = eigenvector[:, max_eigenvalue_index]
- weight = weight / np.sum(weight)
- weight = weight.real
- return weight, max_eigenvalue
- def consistency_check(self, matrix, weight): #层次分析法ahp的一致性检验
- n = len(matrix)
- # 计算一致性指标 CI
- lambda_max = np.sum(np.dot(matrix, weight) / weight) / n
- CI = (lambda_max - n) / (n - 1)
- # 随机一致性指标 RI 的值,这里我们假设矩阵大小不超过10
- RI_list = [0, 0, 0.58, 0.90, 1.12, 1.24, 1.32, 1.41, 1.45, 1.49, 1.52, 1.54, 1.56, 1.58, 1.59, 1.61, 1.63, 1.64,
- 1.65]
- RI = RI_list[n - 1]
- # 计算一致性比例 CR
- CR = CI / RI
- return CI, CR
- if __name__=='__main__':
- start_time = time.time()
- myMSET = MSET()
- # 1、计算各子系统的健康度(子系统包括:发电机组、传动系统(直驱机组无齿轮箱、无数据)、机舱系统、变流器系统、电网环境、辅助系统(无数据))
- # 1.1、发电机组健康度评分
- df_Gen = pd.read_excel(r'F26_SEP_ZHANGYAOXIAN.xlsx',
- usecols=[10, 11, 12, 17]) # 读取发电机组指标:发电机U相温度10、发电机V相温度11、发电机W相温度12、发电机轴承温度17
- W_Gen,Health_Gen = myMSET.calcHealthy(df_Gen)
- print(W_Gen)
- print('发电机组健康度:', Health_Gen)
- # 1.2、机舱系统健康度评分
- df_Nac = pd.read_excel(r'F26_SEP_ZHANGYAOXIAN.xlsx',
- usecols=[23,24,41,42]) # 读取机舱系统指标:塔筒前后振动23、塔筒左右振动24、机舱位置41、机舱温度42
- W_Nac, Health_Nac = myMSET.calcHealthy(df_Nac)
- print(W_Nac)
- print('机舱系统健康度:', Health_Nac)
- # 1.3、变流器系统健康度评分
- df_Con = pd.read_excel(r'F26_SEP_ZHANGYAOXIAN.xlsx',
- usecols=[18,19]) # 读取变流器系统指标:变流器有功功率19、变流器冷却介质温度18
- W_Con, Health_Con = myMSET.calcHealthy(df_Con)
- print(W_Con)
- print('变流器系统健康度:', Health_Con)
- # 1.4、电网环境健康度评分
- df_Grid = pd.read_excel(r'F26_SEP_ZHANGYAOXIAN.xlsx',
- usecols=[32,38,64,65,66]) # 读取电网环境指标:有功功率38、无功功率32、电网A相电流64、电网B相电流65、电网C相电流66
- W_Grid, Health_Grid = myMSET.calcHealthy(df_Grid)
- print(W_Grid)
- print('电网环境健康度:', Health_Grid)
- # 2、计算各子系统的权重
- # 输入判断矩阵(发电机组、机舱系统、变流器系统、电网环境)
- matrix_subsys = np.array([
- [1, 2, 3, 4],
- [1/2, 1, 2, 3],
- [1/3, 1/2, 1, 2],
- [1/4, 1/3, 1/2, 1],
- ])
- # 计算判断矩阵的权重和最大特征值
- weight_subsys, max_eigenvalue_subsys = myMSET.ahp(matrix_subsys)
- print(weight_subsys)
- # 检查一致性
- CI1, CR1 = myMSET.consistency_check(matrix_subsys, weight_subsys)
- # 3、计算整机的健康度
- Score_subsys = np.array([Health_Gen, Health_Nac, Health_Con, Health_Grid])
- weight_subsys = weight_subsys.reshape(-1, 1)
- Score_WT = np.dot(Score_subsys, weight_subsys)
- print('整机健康度:', Score_WT)
- end_time = time.time()
- execution_time = end_time - start_time
- print(f"Execution time: {execution_time} seconds")
- #
- '''
- f = open("speed_vib.txt", "r")
- data1 = f.read()
- f.close()
- data1 = data1.split('\n')
- rpm = [(row.split('\t')[0]).strip() for row in data1]
- vib = [(row.split('\t')[-1]).strip() for row in data1]
- # print(rpm)
- rpm = np.array(rpm).astype(np.float64)
- vib = np.array(vib).astype(np.float64)
- #vib = [(x-np.mean(vib))/np.std(vib) for x in vib]
- #print(vib)
- trainDataSet = [vib[i] for i in range(0,100) if vib[i] < 5]
- trainDataSet = np.reshape(trainDataSet,(len(trainDataSet),1))
- testDataSet = np.reshape(vib, (len(vib),1))
- '''
- # Title = pd.read_csv(r'F1710001001.csv', header=None, nrows=1, usecols=[36,37,38], encoding='gbk')
- '''
- alarmedFlag = np.array([[i, flag[i]] for i, x in enumerate(flag) if x > 0.99]) # Flag中选出大于0.99的点
- plt.close('all')
- plt.subplot(211)
- plt.plot(testDataSet)
- plt.ylabel('Vibration')
- plt.xlabel('Sample index')
- plt.subplot(212)
- plt.plot(flag)
- plt.ylabel('SPRT results')
- plt.xlabel('Sample index')
- plt.scatter(alarmedFlag[:,0], alarmedFlag[:,1], marker='x',c='r')
- plt.show()
- '''
|