# temp_diag.py import numpy as np import pandas as pd from sklearn.neighbors import BallTree from sqlalchemy import create_engine, text import math class MSET_Temp: """ 基于 MSET + SPRT 的温度趋势/阈值分析类。 查询条件由 wind_turbine_number 列和 time_stamp 范围决定, SPRT 阈值固定为 0.99,calcSPRT 输出在 [-1,1]。 """ def __init__(self, windCode: str, windTurbineNumberList: list[str], startTime: str, endTime: str): """ :param windCode: 风机类型或机组代码,用于拼表名。例如 "WOG01312" → 表名 "WOG01312_minute" :param windTurbineNumberList: 要查询的 wind_turbine_number(风机编号)列表 :param startTime: 起始时间(字符串),格式 "YYYY-MM-DD HH:MM" :param endTime: 结束时间(字符串),格式 "YYYY-MM-DD HH:MM" """ self.windCode = windCode.strip() self.windTurbineNumberList = windTurbineNumberList # 强制保留到秒 self.startTime = startTime self.endTime = endTime # D/L 矩阵相关 self.matrixD = None self.matrixL = None self.healthyResidual = None self.normalDataBallTree = None # def _truncate_to_seconds(self, dt_str: str) -> str: # """ # 将用户可能传进来的 ISO 时间字符串或包含毫秒的字符串 # 截断到秒,返回 "YYYY-MM-DD HH:MM:SS" 格式。 # 例如: "2025-06-01T12:34:56.789Z" → "2025-06-01 12:34:56" # """ # # 先将 'T' 替换成空格,去掉尾部可能的 "Z" # s = dt_str.replace("T", " ").rstrip("Z") # # 如果含有小数秒,截断 # if "." in s: # s = s.split(".")[0] # # 如果还有 "+xx:xx" 时区后缀,也截断 # if "+" in s: # s = s.split("+")[0] # return s.strip() def _get_data_by_filter(self) -> pd.DataFrame: """ 按 wind_turbine_number 列和 time_stamp 时间范围批量查询, 返回一个完整的 DataFrame(已按 time_stamp 升序排序)。 """ table_name = f"{self.windCode}_minute" engine = create_engine( # "mysql+pymysql://root:admin123456@106.120.102.238:10336/energy_data_prod" "mysql+pymysql://root:admin123456@192.168.50.235:30306/energy_data_prod" ) # 准备 wind_turbine_number 列表的 SQL 片段:('WT1','WT2',...) turbines = ",".join(f"'{wt.strip()}'" for wt in self.windTurbineNumberList) sql = text(f""" SELECT * FROM {table_name} WHERE wind_turbine_number IN ({turbines}) AND time_stamp BETWEEN :start AND :end ORDER BY time_stamp ASC """) df = pd.read_sql(sql, engine, params={"start": self.startTime, "end": self.endTime}) return df def calcSimilarity(self, x: np.ndarray, y: np.ndarray, m: str = 'euc') -> float: """ 计算向量 x 与 y 的相似度,(0,1] 区间: - m='euc' → 欧氏距离 - m='cbd' → 城市街区距离 """ if len(x) != len(y): return 0.0 if m == 'cbd': arr = [1.0 / (1.0 + abs(p - q)) for p, q in zip(x, y)] return float(np.sum(arr) / len(arr)) else: diffsq = [(p - q) ** 2 for p, q in zip(x, y)] return float(1.0 / (1.0 + math.sqrt(np.sum(diffsq)))) def genDLMatrix(self, trainDataset: np.ndarray, dataSize4D=100, dataSize4L=50) -> int: """ 根据训练集 trainDataset 生成 D/L 矩阵: - 若样本数 < dataSize4D + dataSize4L,返回 -1 - 否则构造 matrixD、matrixL,并用局部加权回归获得 healthyResidual,返回 0 """ m, n = trainDataset.shape if m < dataSize4D + dataSize4L: return -1 # Step1:每个特征的最小/最大样本加入 matrixD self.matrixD = [] selectIndex4D = [] for i in range(n): col_i = trainDataset[:, i] idx_min = np.argmin(col_i) idx_max = np.argmax(col_i) self.matrixD.append(trainDataset[idx_min, :].tolist()) selectIndex4D.append(idx_min) self.matrixD.append(trainDataset[idx_max, :].tolist()) selectIndex4D.append(idx_max) # Step2:对剩余样本逐步选出“与 matrixD 平均距离最大”的样本,直至 matrixD 行数 = dataSize4D while len(selectIndex4D) < dataSize4D: freeList = list(set(range(len(trainDataset))) - set(selectIndex4D)) distAvg = [] for idx in freeList: tmp = trainDataset[idx, :] dlist = [1.0 - self.calcSimilarity(x, tmp) for x in self.matrixD] distAvg.append(np.mean(dlist)) select_id = freeList[int(np.argmax(distAvg))] self.matrixD.append(trainDataset[select_id, :].tolist()) selectIndex4D.append(select_id) self.matrixD = np.array(self.matrixD) # 用 matrixD 建 BallTree,用于局部加权回归 self.normalDataBallTree = BallTree( self.matrixD, leaf_size=4, metric=lambda a, b: 1.0 - self.calcSimilarity(a, b) ) # Step3:把所有训练样本都作为 matrixL self.matrixL = trainDataset.copy() # Step4:用局部加权回归算出健康残差 self.healthyResidual = self.calcResidualByLocallyWeightedLR(self.matrixL) return 0 def calcResidualByLocallyWeightedLR(self, newStates: np.ndarray) -> np.ndarray: """ 对 newStates 中每个样本,使用 matrixD 的前 20 个最近邻做局部加权回归,计算残差。 返回形状 [len(newStates), 特征数] 的残差矩阵。 """ est_list = [] for x in newStates: dist, idxs = self.normalDataBallTree.query([x], k=20, return_distance=True) w = 1.0 / (dist[0] + 1e-1) w = w / np.sum(w) est = np.sum([w_i * self.matrixD[j] for w_i, j in zip(w, idxs[0])], axis=0) est_list.append(est) est_arr = np.reshape(np.array(est_list), (len(est_list), -1)) return est_arr - newStates def calcSPRT( self, newsStates: np.ndarray, feature_weight: np.ndarray, alpha: float = 0.1, beta: float = 0.1, decisionGroup: int = 5 ) -> list[float]: """ 对 newsStates 运行 Wald-SPRT,返回得分列表,长度 = len(newsStates) - decisionGroup + 1, 分数在 [-1, 1]: - 越接近 1 → 越“异常(危险)” - 越接近 -1 → 越“正常” """ # 1) 计算残差并做特征加权 stateRes = self.calcResidualByLocallyWeightedLR(newsStates) weightedStateResidual = [np.dot(x, feature_weight) for x in stateRes] weightedHealthyResidual = [np.dot(x, feature_weight) for x in self.healthyResidual] # 2) 健康残差的分布统计 mu0 = float(np.mean(weightedHealthyResidual)) sigma0 = float(np.std(weightedHealthyResidual)) # 3) 计算 SPRT 的上下阈值 lowThres = np.log(beta / (1.0 - alpha)) # < 0 highThres = np.log((1.0 - beta) / alpha) # > 0 flags: list[float] = [] length = len(weightedStateResidual) for i in range(0, length - decisionGroup + 1): segment = weightedStateResidual[i : i + decisionGroup] mu1 = float(np.mean(segment)) si = ( np.sum(segment) * (mu1 - mu0) / (sigma0**2) - decisionGroup * ((mu1**2) - (mu0**2)) / (2.0 * (sigma0**2)) ) # 限制 si 在 [lowThres, highThres] 之内 si = max(min(si, highThres), lowThres) # 正负归一化 if si > 0: norm_si = float(si / highThres) else: norm_si = float(si / lowThres) flags.append(norm_si) return flags def check_threshold(self) -> pd.DataFrame: """ 阈值分析(阈值固定 0.99)。返回长格式 DataFrame,列: ["time_stamp", "temp_channel", "SPRT_score", "status"] status = "危险" if SPRT_score > 0.99 else "正常"。 """ THRESHOLD = 0.99 # 1) 按风机编号 + 时间范围查询原始数据 df_concat = self._get_data_by_filter() if df_concat.empty: return pd.DataFrame(columns=["time_stamp", "temp_channel", "SPRT_score", "status"]) # 2) 筛选存在的温度列 temp_cols_all = [ 'main_bearing_temperature', 'gearbox_oil_temperature', 'generatordrive_end_bearing_temperature', 'generatornon_drive_end_bearing_temperature' ] temp_cols = [c for c in temp_cols_all if c in df_concat.columns] if not temp_cols: return pd.DataFrame(columns=["time_stamp", "temp_channel", "SPRT_score", "status"]) # 3) 转数值 & 删除 NaN df_concat[temp_cols] = df_concat[temp_cols].apply(pd.to_numeric, errors='coerce') df_concat = df_concat.dropna(subset=temp_cols + ['time_stamp']) if df_concat.empty: return pd.DataFrame(columns=["time_stamp", "temp_channel", "SPRT_score", "status"]) # 4) time_stamp 转 datetime df_concat['time_stamp'] = pd.to_datetime(df_concat['time_stamp']) x_date = df_concat['time_stamp'] # 5) 抽取温度列到 NumPy 数组 arr = df_concat[temp_cols].values # shape = [总记录数, 通道数] m, n = arr.shape half = m // 2 all_flags: list[list[float]] = [] for i in range(n): channel = arr[:, i] train = channel[:half].reshape(-1, 1) test = channel[half:].reshape(-1, 1) # 用训练集构造 D/L 矩阵 if self.genDLMatrix(train, dataSize4D=60, dataSize4L=5) != 0: # 如果训练集样本不足,直接返回空表 return pd.DataFrame(columns=["time_stamp", "temp_channel", "SPRT_score", "status"]) feature_w = np.array([1.0]) flags = self.calcSPRT(test, feature_w, decisionGroup=1) all_flags.append(flags) # 6) 合并为宽表,再 melt 成长表 flags_arr = np.array(all_flags) # shape = [通道数, 测试样本数] num_test = flags_arr.shape[1] ts = x_date.iloc[half : half + num_test].reset_index(drop=True) wide = pd.DataFrame({"time_stamp": ts}) for idx, col in enumerate(temp_cols): wide[col] = flags_arr[idx, :] df_long = wide.melt( id_vars=["time_stamp"], value_vars=temp_cols, var_name="temp_channel", value_name="SPRT_score" ) # 把 time_stamp 从 datetime 转成字符串,格式 "YYYY-MM-DD HH:MM:SS" df_long['time_stamp'] = pd.to_datetime(df_long['time_stamp']).dt.strftime("%Y-%m-%d %H:%M:%S") # 7) 添加状态列:SPRT_score > 0.99 → “危险”,否则 “正常” df_long['status'] = df_long['SPRT_score'].apply( lambda x: "危险" if x > THRESHOLD else "正常" ) # 8) 将 temp_channel 列的英文名称改为中文 temp_channel_mapping = { 'main_bearing_temperature': '主轴承温度', 'gearbox_oil_temperature': '齿轮箱油温', 'generatordrive_end_bearing_temperature': '发电机驱动端轴承温度', 'generatornon_drive_end_bearing_temperature': '发电机非驱动端轴承温度' } df_long['temp_channel'] = df_long['temp_channel'].map(temp_channel_mapping) return df_long def get_trend(self) -> dict: """ 趋势分析 获取温度趋势:将温度数据按时间返回。 返回格式:{ "timestamps": [ISO8601 字符串列表], "channels": [ {"temp_channel": "main_bearing_temperature", "values": [浮点列表]}, {"temp_channel": "gearbox_oil_temperature", "values": [...]}, ... ], "unit": "°C" } """ df = self._get_data_by_filter() if df.empty: return {"timestamps": [], "channels": [], "unit": "°C"} # 定义所有需要检查的温度列 temp_cols_all = [ 'main_bearing_temperature', 'gearbox_oil_temperature', 'generatordrive_end_bearing_temperature', 'generatornon_drive_end_bearing_temperature' ] # 选择实际存在的列 temp_cols = [c for c in temp_cols_all if c in df.columns] # 如果没有温度数据列,返回空数据 if not temp_cols: return {"timestamps": [], "channels": [], "unit": "°C"} # 转数值,并删除 NaN df[temp_cols] = df[temp_cols].apply(pd.to_numeric, errors='coerce') df = df.dropna(subset=temp_cols + ['time_stamp']) # 转时间戳为 `YYYY-MM-DD HH:MM:SS` 格式 df['time_stamp'] = pd.to_datetime(df['time_stamp']).dt.strftime("%Y-%m-%d %H:%M:%S") df = df.sort_values('time_stamp').reset_index(drop=True) # 时间戳格式化为 ISO 8601 字符串 timestamps = df['time_stamp'].tolist() # 对每个通道,收集它在相应行的数值 channels_data = [] for col in temp_cols: channels_data.append({ "temp_channel": col, "values": df[col].tolist() }) # 将 temp_channel 列的英文名称改为中文 temp_channel_mapping = { 'main_bearing_temperature': '主轴承温度', 'gearbox_oil_temperature': '齿轮箱油温', 'generatordrive_end_bearing_temperature': '发电机驱动端轴承温度', 'generatornon_drive_end_bearing_temperature': '发电机非驱动端轴承温度' } for channel in channels_data: channel['temp_channel'] = temp_channel_mapping.get(channel['temp_channel'], channel['temp_channel']) return { "timestamps": timestamps, "channels": channels_data, "unit": "°C" }