123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- # main.py
- import os, glob
- import pandas as pd
- from fastapi import FastAPI, HTTPException
- from fastapi.responses import JSONResponse
- from pydantic import BaseModel, model_validator
- from typing import List
- from Temp_Diag import MSET_Temp
- app = FastAPI(title="Temperature Diagnosis API")
- # 全局:{ windCode: { turbine: { channel: model, … }, … }, … }
- MODEL_STORE: dict[str, dict[str, dict[str, MSET_Temp]]] = {}
- # 英文→中文映射
- cn_map = {
- 'main_bearing_temperature': '主轴承温度',
- 'gearbox_oil_temperature': '齿轮箱油温',
- 'generatordrive_end_bearing_temperature': '发电机驱动端轴承温度',
- 'generatornon_drive_end_bearing_temperature': '发电机非驱动端轴承温度'
- }
- class TemperatureInput(BaseModel):
- windCode: str
- windTurbineNumberList: List[str]
- startTime: str
- endTime: str
- @model_validator(mode='before')
- def ensure_list(cls, v):
- raw = v.get('windTurbineNumberList')
- if isinstance(raw, str):
- v['windTurbineNumberList'] = [raw]
- return v
- class TemperatureThresholdInput(TemperatureInput):
- pageNo: int
- pageSize: int
- @app.on_event("startup")
- def load_all_models():
- for f in glob.glob("models/*/*/*.pkl"):
- _, wc, turbine, fname = f.split(os.sep)
- ch = os.path.splitext(fname)[0]
- MODEL_STORE.setdefault(wc, {}).setdefault(turbine, {})[ch] = MSET_Temp.load_model(f)
- print("模型加载完成:", {k: list(v.keys()) for k,v in MODEL_STORE.items()})
- @app.post("/temperature/threshold")
- async def route_threshold(inp: TemperatureThresholdInput):
- """
- 输入:
- {
- "windCode": "WOF091200030",
- "windTurbineNumberList": ["WOG01355"],
- "startTime": "2024-06-01 00:00",
- "endTime": "2024-06-05 01:00",
- "pageNo": 1,
- "pageSize": 10
- }
- 输出:
- {
- "data": {
- "type": "temperature_threshold",
- "records": [
- {
- "wind_turbine_number": "WOG01355",
- "time_stamp": "2025-06-01 00:05:00",
- "temp_channel": "主轴承温度",
- "SPRT_score": 0.12,
- "status": "正常"
- },
- ...
- ],
- "totalSize": 42
- },
- "code": 200,
- "message": "success"
- }
- """
- # 1) 校验模型是否存在
- if inp.windCode not in MODEL_STORE:
- raise HTTPException(404, f"无模型:{inp.windCode}")
- # 2) 为每台待分析风机,拉数据并推理
- records = []
- for turbine in inp.windTurbineNumberList:
- if turbine not in MODEL_STORE[inp.windCode]:
- continue
- analyzer = MSET_Temp(inp.windCode, [turbine], inp.startTime, inp.endTime)
- df = analyzer._get_data_by_filter()
- if df.empty:
- continue
- df['time_stamp'] = pd.to_datetime(df['time_stamp'])
- for eng, cn in cn_map.items():
- if eng not in df.columns:
- continue
- sub = df[['time_stamp', eng]].dropna()
- arr = sub[eng].values.reshape(-1,1)
- ts = sub['time_stamp'].dt.strftime("%Y-%m-%d %H:%M:%S").tolist()
- model = MODEL_STORE[inp.windCode][turbine].get(eng)
- if not model:
- continue
- flags = model.predict_SPRT(arr, decisionGroup=1)
- for i, sc in enumerate(flags):
- records.append({
- "wind_turbine_number": turbine,
- "time_stamp": ts[i],
- "temp_channel": cn,
- "SPRT_score": sc,
- "status": "危险" if sc>0.99 else "正常"
- })
- # 分页返回
- total = len(records)
- start = (inp.pageNo-1)*inp.pageSize
- end = start+inp.pageSize
- return {
- "data": {
- "type": "temperature_threshold",
- "records": records[start:end],
- "totalSize": total
- },
- "code": 200,
- "message": "success"
- }
- @app.post("/SPRT/trend")
- async def route_trend(inp: TemperatureInput):
- """
- 输入:
- {
- "windCode": "WOF091200030",
- "windTurbineNumberList": ["WOG01355"],
- "startTime": "2024-06-01 00:00",
- "endTime": "2024-06-05 01:00"
- }
- 输出:
- {
- "data": {
- "type": "SPRT_trend",
- "main_bearing": {"timestamps": [...], "values": [...]},
- "gearbox_oil": {"timestamps": [...], "values": [...]},
- "generator_drive_end": {"timestamps": [...], "values": [...]},
- "generator_nondrive_end": {"timestamps": [...], "values": [...]}
- },
- "code": 200,
- "message": "success"
- }
- """
- if inp.windCode not in MODEL_STORE:
- raise HTTPException(404, f"无模型:{inp.windCode}")
- turbines_out = []
- for turbine in inp.windTurbineNumberList:
- if turbine not in MODEL_STORE[inp.windCode]:
- continue
- analyzer = MSET_Temp(inp.windCode, [turbine], inp.startTime, inp.endTime)
- df = analyzer._get_data_by_filter()
- if df.empty:
- continue
- df['time_stamp'] = pd.to_datetime(df['time_stamp'])
- ch_data = {}
- for eng, key in {
- 'main_bearing_temperature':'main_bearing',
- 'gearbox_oil_temperature':'gearbox_oil',
- 'generatordrive_end_bearing_temperature':'generator_drive_end',
- 'generatornon_drive_end_bearing_temperature':'generator_nondrive_end'
- }.items():
- if eng not in df.columns:
- ch_data[key] = {"timestamps": [], "values": []}
- continue
- sub = df[['time_stamp', eng]].dropna()
- ts = sub['time_stamp'].dt.strftime("%Y-%m-%d %H:%M:%S").tolist()
- arr = sub[eng].values.reshape(-1,1)
- model = MODEL_STORE[inp.windCode][turbine].get(eng)
- vals = model.predict_SPRT(arr, decisionGroup=1) if model else []
- ch_data[key] = {"timestamps": ts, "values": vals}
- # turbines_out.append({
- # "wind_turbine_number": turbine,
- # **ch_data
- # })
- return {
- "data": {
- "type": "SPRT_trend",
- **ch_data
- },
- "code": 200,
- "message": "success"
- }
- if __name__ == "__main__":
- import uvicorn
- uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|