Temp_Diag.PY 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184
  1. import numpy as np
  2. import pandas as pd
  3. from sklearn.neighbors import BallTree
  4. from sqlalchemy import create_engine, text
  5. import math, joblib, os
  6. class MSET_Temp:
  7. """
  8. MSET + SPRT 温度分析类:
  9. - 离线训练:genDLMatrix → save_model
  10. - 在线推理:load_model → predict_SPRT
  11. """
  12. def __init__(self,
  13. windCode: str,
  14. windTurbineNumberList: list[str],
  15. startTime: str,
  16. endTime: str):
  17. self.windCode = windCode.strip()
  18. self.windTurbineNumberList = windTurbineNumberList or []
  19. self.startTime = startTime
  20. self.endTime = endTime
  21. # 离线训练/加载后赋值
  22. self.matrixD = None
  23. self.healthyResidual = None
  24. self.normalDataBallTree = None
  25. # SPRT 参数(离线训练时设置)
  26. self.feature_weight: np.ndarray | None = None
  27. self.alpha: float = 0.1
  28. self.beta: float = 0.1
  29. def _get_data_by_filter(self) -> pd.DataFrame:
  30. """
  31. 在线推理专用:根据 self.windTurbineNumberList & 时间拉数据;
  32. 如果列表为空,则拉全场数据。
  33. """
  34. table = f"{self.windCode}_minute"
  35. engine = create_engine(
  36. #"mysql+pymysql://root:admin123456@106.120.102.238:10336/energy_data_prod"
  37. "mysql+pymysql://root:admin123456@192.168.50.235:30306/energy_data_prod"
  38. )
  39. if self.windTurbineNumberList:
  40. turbines = ",".join(f"'{t}'" for t in self.windTurbineNumberList)
  41. cond = f"wind_turbine_number IN ({turbines}) AND time_stamp BETWEEN :start AND :end"
  42. else:
  43. cond = "time_stamp BETWEEN :start AND :end"
  44. sql = text(f"""
  45. SELECT *
  46. FROM {table}
  47. WHERE {cond}
  48. ORDER BY time_stamp ASC
  49. """)
  50. return pd.read_sql(sql, engine, params={"start": self.startTime, "end": self.endTime})
  51. def calcSimilarity(self, x: np.ndarray, y: np.ndarray, m: str = 'euc') -> float:
  52. if len(x) != len(y):
  53. return 0.0
  54. if m == 'cbd':
  55. return float(np.mean([1.0/(1.0+abs(p-q)) for p,q in zip(x,y)]))
  56. diffsq = np.sum((x-y)**2)
  57. return float(1.0/(1.0+math.sqrt(diffsq)))
  58. def genDLMatrix(self, trainDataset: np.ndarray,
  59. dataSize4D=100, dataSize4L=50) -> int:
  60. """
  61. 离线训练:构造 matrixD/matrixL/healthyResidual/BallTree
  62. """
  63. m, n = trainDataset.shape
  64. if m < dataSize4D + dataSize4L:
  65. return -1
  66. # Step1:每维最小/最大入 D
  67. D_idx, D = [], []
  68. for i in range(n):
  69. col = trainDataset[:, i]
  70. for idx in (np.argmin(col), np.argmax(col)):
  71. D.append(trainDataset[idx].tolist())
  72. D_idx.append(idx)
  73. # Step2:挑样本至 dataSize4D
  74. while len(D_idx) < dataSize4D:
  75. free = list(set(range(m)) - set(D_idx))
  76. scores = [(np.mean([1-self.calcSimilarity(trainDataset[i], d) for d in D]), i)
  77. for i in free]
  78. _, pick = max(scores)
  79. D.append(trainDataset[pick].tolist())
  80. D_idx.append(pick)
  81. self.matrixD = np.array(D)
  82. # BallTree + healthyResidual
  83. self.normalDataBallTree = BallTree(
  84. self.matrixD,
  85. leaf_size=4,
  86. metric=lambda a,b: 1.0 - self.calcSimilarity(a, b)
  87. )
  88. # healthyResidual
  89. ests = []
  90. for x in trainDataset:
  91. dist, idxs = self.normalDataBallTree.query([x], k=20, return_distance=True)
  92. w = 1.0/(dist[0]+1e-1)
  93. w /= w.sum()
  94. ests.append(np.sum([wi*self.matrixD[j] for wi,j in zip(w,idxs[0])], axis=0))
  95. self.healthyResidual = np.array(ests) - trainDataset
  96. return 0
  97. def calcSPRT(self,
  98. newsStates: np.ndarray,
  99. feature_weight: np.ndarray,
  100. alpha: float = 0.1,
  101. beta: float = 0.1,
  102. decisionGroup: int = 5) -> list[float]:
  103. """
  104. Wald-SPRT 得分
  105. """
  106. # 新状态残差
  107. ests = []
  108. for x in newsStates:
  109. dist, idxs = self.normalDataBallTree.query([x], k=20, return_distance=True)
  110. w = 1.0/(dist[0]+1e-1); w/=w.sum()
  111. ests.append(np.sum([wi*self.matrixD[j] for wi,j in zip(w,idxs[0])], axis=0))
  112. resN = np.array(ests) - newsStates
  113. # 加权
  114. wN = [np.dot(r, feature_weight) for r in resN]
  115. wH = [np.dot(r, feature_weight) for r in self.healthyResidual]
  116. mu0, sigma0 = np.mean(wH), np.std(wH)
  117. low = math.log(beta/(1-alpha)); high = math.log((1-beta)/alpha)
  118. flags = []
  119. for i in range(len(wN)-decisionGroup+1):
  120. seg = wN[i:i+decisionGroup]; mu1=np.mean(seg)
  121. si = (sum(seg)*(mu1-mu0)/sigma0**2
  122. - decisionGroup*((mu1**2-mu0**2)/(2*sigma0**2)))
  123. si = max(min(si, high), low)
  124. flags.append(si/high if si>0 else si/low)
  125. return flags
  126. def predict_SPRT(self,
  127. newsStates: np.ndarray,
  128. decisionGroup: int = 5) -> list[float]:
  129. """
  130. 在线推理:用离线保存的 matrixD/healthyResidual/feature_weight/alpha/beta
  131. """
  132. return self.calcSPRT(
  133. newsStates,
  134. self.feature_weight,
  135. alpha=self.alpha,
  136. beta=self.beta,
  137. decisionGroup=decisionGroup
  138. )
  139. def save_model(self, path: str):
  140. """
  141. Save matrixD, healthyResidual, feature_weight, alpha, beta
  142. """
  143. os.makedirs(os.path.dirname(path), exist_ok=True)
  144. joblib.dump({
  145. 'matrixD': self.matrixD,
  146. 'healthyResidual': self.healthyResidual,
  147. 'feature_weight': self.feature_weight,
  148. 'alpha': self.alpha,
  149. 'beta': self.beta,
  150. }, path)
  151. @classmethod
  152. def load_model(cls, path: str) -> 'MSET_Temp':
  153. """
  154. Load + rebuild BallTree
  155. """
  156. data = joblib.load(path)
  157. inst = cls('', [], '', '')
  158. inst.matrixD = data['matrixD']
  159. inst.healthyResidual = data['healthyResidual']
  160. inst.feature_weight = data['feature_weight']
  161. inst.alpha = data['alpha']
  162. inst.beta = data['beta']
  163. inst.normalDataBallTree = BallTree(
  164. inst.matrixD,
  165. leaf_size=4,
  166. metric=lambda a,b: 1.0 - inst.calcSimilarity(a, b)
  167. )
  168. return inst