|
|
@@ -89,6 +89,7 @@ def data_analyse(path: List[str]):
|
|
|
min_difference = 1.5
|
|
|
angle_cone = float(path[2])
|
|
|
axial_inclination = float(path[3])
|
|
|
+ group_length = [10000, 30000, 5000]
|
|
|
return_list = []
|
|
|
|
|
|
wind_name, turbine_code, time_code, sampling_fq, angle_nan, angle_cen = find_param(locate_file)
|
|
|
@@ -121,11 +122,11 @@ def data_analyse(path: List[str]):
|
|
|
lowpass_data, fft_x, fft_y, tower_freq, tower_max = ff.process_fft(filtered_data_cen, sampling_fq)
|
|
|
|
|
|
result_line_tip, result_scatter_tip, border_rows_tip, cycle_len_tip, min_tip \
|
|
|
- = data_normalize(filtered_data_tip, start_tip, end_tip)
|
|
|
+ = data_normalize(filtered_data_tip, start_tip, end_tip, group_length[0])
|
|
|
result_line_root, result_scatter_root, border_rows_root, cycle_len_root, min_root \
|
|
|
- = data_normalize(filtered_data_root, start_root, end_root)
|
|
|
+ = data_normalize(filtered_data_root, start_root, end_root, group_length[1])
|
|
|
result_line_nan, result_scatter_nan, border_rows_nan, cycle_len_nan, min_nan \
|
|
|
- = data_normalize(filtered_data_nan, start_nan, end_nan)
|
|
|
+ = data_normalize(filtered_data_nan, start_nan, end_nan, group_length[2])
|
|
|
|
|
|
result_avg_tip, result_diff_tip = blade_shape(result_line_tip)
|
|
|
result_avg_root, result_diff_root = blade_shape(result_line_root)
|
|
|
@@ -507,7 +508,7 @@ def cycle_calculate(data_group: pd.DataFrame, noise_threshold: float, min_distan
|
|
|
return start_points, end_points, filtered_data
|
|
|
|
|
|
|
|
|
-def data_normalize(data_group: pd.DataFrame, start_points: pd.DataFrame, end_points: pd.DataFrame) \
|
|
|
+def data_normalize(data_group: pd.DataFrame, start_points: pd.DataFrame, end_points: pd.DataFrame, group_len: int) \
|
|
|
-> Tuple[List[pd.DataFrame], List[pd.DataFrame], List[pd.DataFrame], int, list]:
|
|
|
|
|
|
|
|
|
@@ -551,7 +552,7 @@ def data_normalize(data_group: pd.DataFrame, start_points: pd.DataFrame, end_poi
|
|
|
turbines_scattered = []
|
|
|
min_list = []
|
|
|
sd_time = [-1, -1]
|
|
|
- time_list = list(range(0, normalize_cycle, 9001))
|
|
|
+ time_list = list(range(0, normalize_cycle, group_len))
|
|
|
|
|
|
for turbine in turbines:
|
|
|
|
|
|
@@ -561,7 +562,7 @@ def data_normalize(data_group: pd.DataFrame, start_points: pd.DataFrame, end_poi
|
|
|
first_time = turbine_sorted['time'].iloc[0]
|
|
|
|
|
|
|
|
|
- bins = list(range(int(first_time), int(turbine_sorted['time'].max()), 9001))
|
|
|
+ bins = list(range(int(first_time), int(turbine_sorted['time'].max()), group_len))
|
|
|
|
|
|
|
|
|
grouped = turbine_sorted.groupby(pd.cut(turbine_sorted['time'], bins=bins, right=False))
|