|
@@ -0,0 +1,274 @@
|
|
|
+import os
|
|
|
+import torch
|
|
|
+import torch.distributed as dist
|
|
|
+from unsloth import FastLanguageModel
|
|
|
+from unsloth import is_bfloat16_supported
|
|
|
+from trl import SFTTrainer, GRPOConfig, GRPOTrainer
|
|
|
+from datasets import load_dataset
|
|
|
+from transformers import TrainingArguments
|
|
|
+
|
|
|
+import re
|
|
|
+from datasets import load_dataset, Dataset
|
|
|
+from modelscope.msdatasets import MsDataset
|
|
|
+
|
|
|
+# Load and prep dataset
|
|
|
+SYSTEM_PROMPT = """
|
|
|
+Respond in the following format:
|
|
|
+<reasoning>
|
|
|
+...
|
|
|
+</reasoning>
|
|
|
+<answer>
|
|
|
+...
|
|
|
+</answer>
|
|
|
+"""
|
|
|
+
|
|
|
+XML_COT_FORMAT = """\
|
|
|
+<reasoning>
|
|
|
+{reasoning}
|
|
|
+</reasoning>
|
|
|
+<answer>
|
|
|
+{answer}
|
|
|
+</answer>
|
|
|
+"""
|
|
|
+
|
|
|
+def extract_xml_answer(text: str) -> str:
|
|
|
+ answer = text.split("<answer>")[-1]
|
|
|
+ answer = answer.split("</answer>")[0]
|
|
|
+ return answer.strip()
|
|
|
+
|
|
|
+def extract_hash_answer(text: str) -> str | None:
|
|
|
+ if "####" not in text:
|
|
|
+ return None
|
|
|
+ return text.split("####")[1].strip()
|
|
|
+
|
|
|
+# uncomment middle messages for 1-shot prompting
|
|
|
+def get_gsm8k_questions(split = "train") -> Dataset:
|
|
|
+ # data = load_dataset('https://huggingface.co/datasets/openai/gsm8k', 'main')[split] # type: ignore
|
|
|
+
|
|
|
+ data = MsDataset.load('openai-mirror/gsm8k', subset_name='main', split=split)
|
|
|
+ data = data.map(lambda x: { # type: ignore
|
|
|
+ 'prompt': [
|
|
|
+ {'role': 'system', 'content': SYSTEM_PROMPT},
|
|
|
+ {'role': 'user', 'content': x['question']}
|
|
|
+ ],
|
|
|
+ 'answer': extract_hash_answer(x['answer'])
|
|
|
+ }) # type: ignore
|
|
|
+ return data # type: ignore
|
|
|
+
|
|
|
+dataset = get_gsm8k_questions()
|
|
|
+
|
|
|
+# 方法 1:使用 datasets 库的 to_json 方法
|
|
|
+dataset.to_json(os.path.join("..","data","backup", "gsm8k_dataset_for_train.jsonl"), orient="records", lines=True, force_ascii=False)
|
|
|
+
|
|
|
+# Reward functions
|
|
|
+def correctness_reward_func(prompts, completions, answer, **kwargs) -> list[float]:
|
|
|
+ responses = [completion[0]['content'] for completion in completions]
|
|
|
+ q = prompts[0][-1]['content']
|
|
|
+ extracted_responses = [extract_xml_answer(r) for r in responses]
|
|
|
+ print('-'*20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}")
|
|
|
+ return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)]
|
|
|
+
|
|
|
+def int_reward_func(completions, **kwargs) -> list[float]:
|
|
|
+ responses = [completion[0]['content'] for completion in completions]
|
|
|
+ extracted_responses = [extract_xml_answer(r) for r in responses]
|
|
|
+ return [0.5 if r.isdigit() else 0.0 for r in extracted_responses]
|
|
|
+
|
|
|
+def strict_format_reward_func(completions, **kwargs) -> list[float]:
|
|
|
+ """Reward function that checks if the completion has a specific format."""
|
|
|
+ pattern = r"^<reasoning>\n.*?\n</reasoning>\n<answer>\n.*?\n</answer>\n$"
|
|
|
+ responses = [completion[0]["content"] for completion in completions]
|
|
|
+ matches = [re.match(pattern, r) for r in responses]
|
|
|
+ return [0.5 if match else 0.0 for match in matches]
|
|
|
+
|
|
|
+def soft_format_reward_func(completions, **kwargs) -> list[float]:
|
|
|
+ """Reward function that checks if the completion has a specific format."""
|
|
|
+ pattern = r"<reasoning>.*?</reasoning>\s*<answer>.*?</answer>"
|
|
|
+ responses = [completion[0]["content"] for completion in completions]
|
|
|
+ matches = [re.match(pattern, r) for r in responses]
|
|
|
+ return [0.5 if match else 0.0 for match in matches]
|
|
|
+
|
|
|
+def count_xml(text) -> float:
|
|
|
+ count = 0.0
|
|
|
+ if text.count("<reasoning>\n") == 1:
|
|
|
+ count += 0.125
|
|
|
+ if text.count("\n</reasoning>\n") == 1:
|
|
|
+ count += 0.125
|
|
|
+ if text.count("\n<answer>\n") == 1:
|
|
|
+ count += 0.125
|
|
|
+ count -= len(text.split("\n</answer>\n")[-1])*0.001
|
|
|
+ if text.count("\n</answer>") == 1:
|
|
|
+ count += 0.125
|
|
|
+ count -= (len(text.split("\n</answer>")[-1]) - 1)*0.001
|
|
|
+ return count
|
|
|
+
|
|
|
+def xmlcount_reward_func(completions, **kwargs) -> list[float]:
|
|
|
+ contents = [completion[0]["content"] for completion in completions]
|
|
|
+ return [count_xml(c) for c in contents]
|
|
|
+
|
|
|
+class ModelTrainer:
|
|
|
+ def __init__(self, model_name, max_seq_length, dtype, load_in_4bit,lora_rank=32):
|
|
|
+ # 初始化 ModelTrainer 类,设置模型名称、最大序列长度、数据类型和是否以4位加载
|
|
|
+ self.model_name = model_name
|
|
|
+ self.max_seq_length = max_seq_length
|
|
|
+ self.dtype = dtype # dtype: 数据类型,如 torch.float16 或 torch.bfloat16
|
|
|
+ self.load_in_4bit = load_in_4bit # load_in_4bit: 是否以4位精度加载模型,用于节省显存
|
|
|
+ self.lora_rank=lora_rank #Larger rank = smarter, but slower
|
|
|
+
|
|
|
+ def load_model(self):
|
|
|
+ # 加载预训练模型和分词器
|
|
|
+ model, tokenizer = FastLanguageModel.from_pretrained(
|
|
|
+ model_name=self.model_name,
|
|
|
+ max_seq_length=self.max_seq_length,
|
|
|
+ load_in_4bit=self.load_in_4bit, # 值为True 以 4 bit量化进行微调,为False LoRA 16bit。这将内存使用量减少了 4 倍,使我们能够在免费的 16GB 内存 GPU 中实际进行微调。4 位量化本质上将权重转换为一组有限的数字以减少内存使用量。这样做的缺点是准确度会下降 1-2%。如果您想要这种微小的额外准确度,请在较大的 GPU(如 H100)上将其设置为 False。
|
|
|
+ dtype=self.dtype,
|
|
|
+ fast_inference = True, # Enable vLLM fast inference
|
|
|
+ max_lora_rank = lora_rank,
|
|
|
+ gpu_memory_utilization=0.1, # 0.6 # Reduce if out of memory
|
|
|
+ )
|
|
|
+
|
|
|
+ # 将模型移动到设备上
|
|
|
+ model = model.to_empty(device='cuda') # 使用 to_empty 而不是 to
|
|
|
+
|
|
|
+ # 初始化模型的权重
|
|
|
+ for param in model.parameters():
|
|
|
+ if param.is_meta:
|
|
|
+ param.data = torch.randn_like(param) # 随机初始化
|
|
|
+
|
|
|
+ # 添加 LoRA 适配器
|
|
|
+ model = FastLanguageModel.get_peft_model(
|
|
|
+ model,
|
|
|
+ max_seq_length=self.max_seq_length, # 最大上下文(序列)长度
|
|
|
+ r=16, # LoRA 的秩,控制适配器的复杂度
|
|
|
+ target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
|
|
|
+ "gate_proj", "up_proj", "down_proj"], # 应用 LoRA 的目标模块
|
|
|
+ lora_alpha=16, # LoRA 的 alpha 参数,控制适配器的缩放
|
|
|
+ lora_dropout=0, # LoRA 的 dropout 率,设置为0以优化性能
|
|
|
+ bias="none", # 是否在 LoRA 中添加偏置,设置为 "none" 以优化性能
|
|
|
+ use_gradient_checkpointing="unsloth", # 使用梯度检查点以节省显存,对于非常长的上下文,使用 True 或 "unsloth"
|
|
|
+ random_state=3407, # 随机种子,确保实验可复现
|
|
|
+ use_rslora=False, # 是否使用 rank stabilized LoRA,当前不支持
|
|
|
+ loftq_config=None, # LoftQ 配置,当前不支持
|
|
|
+ )
|
|
|
+
|
|
|
+ return model, tokenizer
|
|
|
+
|
|
|
+ def load_data(self, train_data_path):
|
|
|
+ # 加载训练集和测试集
|
|
|
+ train_dataset = load_dataset("json", data_files={"train": train_data_path}, split="train")
|
|
|
+
|
|
|
+ # train_data_path: 训练数据路径,格式为 JSONL
|
|
|
+ return train_dataset
|
|
|
+
|
|
|
+ def train(self, model, tokenizer, train_dataset):
|
|
|
+ print("is_bfloat16_supported()=", is_bfloat16_supported())
|
|
|
+
|
|
|
+ # 监控显存使用情况
|
|
|
+ print(f"Reserved memory: {torch.cuda.memory_reserved()}")
|
|
|
+ print(f"Allocated memory: {torch.cuda.memory_allocated()}")
|
|
|
+
|
|
|
+ # 启用 pin_memory 2025年3月7日未能验证通过
|
|
|
+ train_loader = torch.utils.data.DataLoader(
|
|
|
+ train_dataset, batch_size=1, shuffle=True, pin_memory=True
|
|
|
+ )
|
|
|
+
|
|
|
+ # 释放未使用的显存
|
|
|
+ torch.cuda.empty_cache()
|
|
|
+
|
|
|
+ training_args = GRPOConfig(
|
|
|
+ use_vllm = True, # use vLLM for fast inference!
|
|
|
+ learning_rate = 5e-6,
|
|
|
+ adam_beta1 = 0.9,
|
|
|
+ adam_beta2 = 0.99,
|
|
|
+ weight_decay = 0.1,
|
|
|
+ warmup_ratio = 0.1,
|
|
|
+ lr_scheduler_type = "cosine",
|
|
|
+ optim ="adamw_8bit", # "adamw_8bit" if device == "cuda" else "adamw_torch", # CPU 使用 adamw_torch
|
|
|
+ logging_steps = 1,
|
|
|
+ bf16 = is_bfloat16_supported(),
|
|
|
+ fp16 = not is_bfloat16_supported(),
|
|
|
+ per_device_train_batch_size = 1,
|
|
|
+ gradient_accumulation_steps = 1, # Increase to 4 for smoother training
|
|
|
+ num_generations = 128, # 256 # 每次生成 4 个输出
|
|
|
+ max_prompt_length = 128, # 256 # 输入提示的最大长度
|
|
|
+ max_completion_length = 128,# 200 # 生成内容的最大长度
|
|
|
+ num_train_epochs = 1, # Set to 1 for a full training run
|
|
|
+ max_steps = 10, # 250
|
|
|
+ save_steps = 10, # 250
|
|
|
+ max_grad_norm = 0.1,
|
|
|
+ report_to = "none", # Can use Weights & Biases
|
|
|
+ output_dir = os.path.join('..', 'models',"outputs"),
|
|
|
+ )
|
|
|
+
|
|
|
+ # 初始化 SFTTrainer
|
|
|
+ trainer = GRPOTrainer(
|
|
|
+ model = model,
|
|
|
+ processing_class = tokenizer,
|
|
|
+ reward_funcs = [
|
|
|
+ xmlcount_reward_func,
|
|
|
+ soft_format_reward_func,
|
|
|
+ strict_format_reward_func,
|
|
|
+ int_reward_func,
|
|
|
+ correctness_reward_func,
|
|
|
+ ],
|
|
|
+ args = training_args,
|
|
|
+ train_dataset = train_dataset,
|
|
|
+ )
|
|
|
+
|
|
|
+ # 训练模型
|
|
|
+ trainer.train()
|
|
|
+
|
|
|
+ return model
|
|
|
+
|
|
|
+ def save_model(self, model, tokenizer, save_path):
|
|
|
+ # 保存模型和分词器
|
|
|
+ model.save_pretrained(save_path)
|
|
|
+ tokenizer.save_pretrained(save_path)
|
|
|
+ print(f"Model saved to {save_path}")
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ # 配置参数
|
|
|
+ model_name = os.path.join('..', 'models', 'pretrained', 'DeepSeek-R1-Distill-Qwen-1.5B')
|
|
|
+ # model_name: 预训练模型的路径
|
|
|
+ max_seq_length = 512 # 单次会话(single session) 的最大 token 长度,一个token大约3-4 字节(Byte)
|
|
|
+ dtype = torch.float16 # 数据类型
|
|
|
+ load_in_4bit = True # 是否以4位精度加载模型
|
|
|
+ lora_rank=16
|
|
|
+
|
|
|
+ # 定义训练集和测试集路径
|
|
|
+ train_data_path = os.path.join('..', 'data', 'processed', 'train.jsonl')
|
|
|
+ # train_data_path: 训练数据路径
|
|
|
+
|
|
|
+ try:
|
|
|
+ # 设置环境变量
|
|
|
+ # 单机多卡
|
|
|
+ os.environ['RANK'] = '0' # 第一张卡的 rank
|
|
|
+ os.environ['WORLD_SIZE'] = '1' # 总共有 1 张卡
|
|
|
+ os.environ['MASTER_ADDR'] = 'localhost'
|
|
|
+ os.environ['MASTER_PORT'] = '12345'
|
|
|
+ # 多机多卡
|
|
|
+ # export RANK=0 # 第一台机器的 rank
|
|
|
+ # export WORLD_SIZE=4 # 总共有 4 台机器
|
|
|
+ # export MASTER_ADDR=<主节点 IP>
|
|
|
+ # export MASTER_PORT=12345
|
|
|
+
|
|
|
+ # 初始化进程组
|
|
|
+ dist.init_process_group(backend='nccl', init_method='env://')
|
|
|
+ # 初始化 ModelTrainer
|
|
|
+ trainer = ModelTrainer(model_name, max_seq_length, dtype, load_in_4bit,lora_rank)
|
|
|
+
|
|
|
+ # 加载模型和分词器
|
|
|
+ model, tokenizer = trainer.load_model()
|
|
|
+
|
|
|
+ # 加载数据集
|
|
|
+ train_dataset = trainer.load_data(train_data_path)
|
|
|
+
|
|
|
+ # 训练模型
|
|
|
+ model = trainer.train(model, tokenizer, train_dataset)
|
|
|
+
|
|
|
+ # 保存模型
|
|
|
+ save_path = os.path.join('..', 'models', 'trained', 'DeepSeek-R1-Distill-Qwen-1.5B-GRPO')
|
|
|
+ trainer.save_model(model, tokenizer, save_path)
|
|
|
+ finally:
|
|
|
+ # 确保进程组被销毁
|
|
|
+ if dist.is_initialized():
|
|
|
+ dist.destroy_process_group()
|