Explorar o código

修改train_model_grpo.py文件-开启vLLM 观察能否解决损失率值0并且无变化问题

zhouyang.xie hai 3 meses
pai
achega
a59d8b40a2
Modificáronse 2 ficheiros con 287 adicións e 12 borrados
  1. 13 12
      src/train_model_grpo.py
  2. 274 0
      src/train_model_grpo_v2.py

+ 13 - 12
src/train_model_grpo.py

@@ -121,9 +121,9 @@ class ModelTrainer:
             max_seq_length=self.max_seq_length,
             load_in_4bit=self.load_in_4bit, # 值为True 以 4 bit量化进行微调,为False LoRA 16bit。这将内存使用量减少了 4 倍,使我们能够在免费的 16GB 内存 GPU 中实际进行微调。4 位量化本质上将权重转换为一组有限的数字以减少内存使用量。这样做的缺点是准确度会下降 1-2%。如果您想要这种微小的额外准确度,请在较大的 GPU(如 H100)上将其设置为 False。
             dtype=self.dtype,
-            fast_inference = True, # Enable vLLM fast inference
+            fast_inference = False, # Enable vLLM fast inference
             max_lora_rank = lora_rank,
-            gpu_memory_utilization=0.1, # 0.6 # Reduce if out of memory
+            gpu_memory_utilization=0.6, # 0.6 # Reduce if out of memory
         )
 
         # 将模型移动到设备上
@@ -156,10 +156,6 @@ class ModelTrainer:
         # 加载训练集和测试集
         train_dataset = load_dataset("json", data_files={"train": train_data_path}, split="train")
 
-        # train_loader = torch.utils.data.DataLoader(
-        #     train_dataset, batch_size=1, shuffle=True, pin_memory=True  # 启用 pin_memory  2025年3月7日未能验证通过
-        # )
-
         # train_data_path: 训练数据路径,格式为 JSONL
         return train_dataset
 
@@ -169,12 +165,17 @@ class ModelTrainer:
         # 监控显存使用情况
         print(f"Reserved memory: {torch.cuda.memory_reserved()}")
         print(f"Allocated memory: {torch.cuda.memory_allocated()}")
+
+        # 启用 pin_memory  2025年3月7日未能验证通过
+        train_loader = torch.utils.data.DataLoader(
+            train_dataset, batch_size=1, shuffle=True, pin_memory=True  
+        )
         
         # 释放未使用的显存
         torch.cuda.empty_cache()
 
         training_args = GRPOConfig(
-            use_vllm = True, # use vLLM for fast inference!
+            use_vllm = False, # use vLLM for fast inference!
             learning_rate = 5e-6,
             adam_beta1 = 0.9,
             adam_beta2 = 0.99,
@@ -187,12 +188,12 @@ class ModelTrainer:
             fp16 = not is_bfloat16_supported(),
             per_device_train_batch_size = 1,
             gradient_accumulation_steps = 1, # Increase to 4 for smoother training
-            num_generations = 128, # 256 # 每次生成 4 个输出
-            max_prompt_length = 128, # 256 # 输入提示的最大长度
-            max_completion_length = 128,# 200 # 生成内容的最大长度
+            num_generations = 256, # 256 # 每次生成 4 个输出
+            max_prompt_length = 256, # 256 # 输入提示的最大长度
+            max_completion_length = 200,# 200 # 生成内容的最大长度
             num_train_epochs = 1, # Set to 1 for a full training run
-            max_steps = 10,  # 250
-            save_steps = 10, # 250
+            max_steps = 250,  # 250
+            save_steps = 250, # 250
             max_grad_norm = 0.1,
             report_to = "none", # Can use Weights & Biases
             output_dir = os.path.join('..', 'models',"outputs"),

+ 274 - 0
src/train_model_grpo_v2.py

@@ -0,0 +1,274 @@
+import os
+import torch
+import torch.distributed as dist
+from unsloth import FastLanguageModel
+from unsloth import is_bfloat16_supported
+from trl import SFTTrainer, GRPOConfig, GRPOTrainer
+from datasets import load_dataset
+from transformers import TrainingArguments
+
+import re
+from datasets import load_dataset, Dataset
+from modelscope.msdatasets import MsDataset
+
+# Load and prep dataset
+SYSTEM_PROMPT = """
+Respond in the following format:
+<reasoning>
+...
+</reasoning>
+<answer>
+...
+</answer>
+"""
+
+XML_COT_FORMAT = """\
+<reasoning>
+{reasoning}
+</reasoning>
+<answer>
+{answer}
+</answer>
+"""
+
+def extract_xml_answer(text: str) -> str:
+    answer = text.split("<answer>")[-1]
+    answer = answer.split("</answer>")[0]
+    return answer.strip()
+
+def extract_hash_answer(text: str) -> str | None:
+    if "####" not in text:
+        return None
+    return text.split("####")[1].strip()
+
+# uncomment middle messages for 1-shot prompting
+def get_gsm8k_questions(split = "train") -> Dataset:
+    # data = load_dataset('https://huggingface.co/datasets/openai/gsm8k', 'main')[split] # type: ignore
+    
+    data =  MsDataset.load('openai-mirror/gsm8k', subset_name='main', split=split)
+    data = data.map(lambda x: { # type: ignore
+        'prompt': [
+            {'role': 'system', 'content': SYSTEM_PROMPT},
+            {'role': 'user', 'content': x['question']}
+        ],
+        'answer': extract_hash_answer(x['answer'])
+    }) # type: ignore
+    return data # type: ignore
+
+dataset = get_gsm8k_questions()
+
+# 方法 1:使用 datasets 库的 to_json 方法
+dataset.to_json(os.path.join("..","data","backup", "gsm8k_dataset_for_train.jsonl"), orient="records", lines=True, force_ascii=False)
+
+# Reward functions
+def correctness_reward_func(prompts, completions, answer, **kwargs) -> list[float]:
+    responses = [completion[0]['content'] for completion in completions]
+    q = prompts[0][-1]['content']
+    extracted_responses = [extract_xml_answer(r) for r in responses]
+    print('-'*20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}")
+    return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)]
+
+def int_reward_func(completions, **kwargs) -> list[float]:
+    responses = [completion[0]['content'] for completion in completions]
+    extracted_responses = [extract_xml_answer(r) for r in responses]
+    return [0.5 if r.isdigit() else 0.0 for r in extracted_responses]
+
+def strict_format_reward_func(completions, **kwargs) -> list[float]:
+    """Reward function that checks if the completion has a specific format."""
+    pattern = r"^<reasoning>\n.*?\n</reasoning>\n<answer>\n.*?\n</answer>\n$"
+    responses = [completion[0]["content"] for completion in completions]
+    matches = [re.match(pattern, r) for r in responses]
+    return [0.5 if match else 0.0 for match in matches]
+
+def soft_format_reward_func(completions, **kwargs) -> list[float]:
+    """Reward function that checks if the completion has a specific format."""
+    pattern = r"<reasoning>.*?</reasoning>\s*<answer>.*?</answer>"
+    responses = [completion[0]["content"] for completion in completions]
+    matches = [re.match(pattern, r) for r in responses]
+    return [0.5 if match else 0.0 for match in matches]
+
+def count_xml(text) -> float:
+    count = 0.0
+    if text.count("<reasoning>\n") == 1:
+        count += 0.125
+    if text.count("\n</reasoning>\n") == 1:
+        count += 0.125
+    if text.count("\n<answer>\n") == 1:
+        count += 0.125
+        count -= len(text.split("\n</answer>\n")[-1])*0.001
+    if text.count("\n</answer>") == 1:
+        count += 0.125
+        count -= (len(text.split("\n</answer>")[-1]) - 1)*0.001
+    return count
+
+def xmlcount_reward_func(completions, **kwargs) -> list[float]:
+    contents = [completion[0]["content"] for completion in completions]
+    return [count_xml(c) for c in contents]
+
+class ModelTrainer:
+    def __init__(self, model_name, max_seq_length, dtype, load_in_4bit,lora_rank=32):
+        # 初始化 ModelTrainer 类,设置模型名称、最大序列长度、数据类型和是否以4位加载
+        self.model_name = model_name
+        self.max_seq_length = max_seq_length
+        self.dtype = dtype         # dtype: 数据类型,如 torch.float16 或 torch.bfloat16
+        self.load_in_4bit = load_in_4bit         # load_in_4bit: 是否以4位精度加载模型,用于节省显存
+        self.lora_rank=lora_rank  #Larger rank = smarter, but slower
+
+    def load_model(self):
+        # 加载预训练模型和分词器
+        model, tokenizer = FastLanguageModel.from_pretrained(
+            model_name=self.model_name,
+            max_seq_length=self.max_seq_length,
+            load_in_4bit=self.load_in_4bit, # 值为True 以 4 bit量化进行微调,为False LoRA 16bit。这将内存使用量减少了 4 倍,使我们能够在免费的 16GB 内存 GPU 中实际进行微调。4 位量化本质上将权重转换为一组有限的数字以减少内存使用量。这样做的缺点是准确度会下降 1-2%。如果您想要这种微小的额外准确度,请在较大的 GPU(如 H100)上将其设置为 False。
+            dtype=self.dtype,
+            fast_inference = True, # Enable vLLM fast inference
+            max_lora_rank = lora_rank,
+            gpu_memory_utilization=0.1, # 0.6 # Reduce if out of memory
+        )
+
+        # 将模型移动到设备上
+        model = model.to_empty(device='cuda')  # 使用 to_empty 而不是 to
+
+        # 初始化模型的权重
+        for param in model.parameters():
+            if param.is_meta:
+                param.data = torch.randn_like(param)  # 随机初始化
+
+        # 添加 LoRA 适配器
+        model = FastLanguageModel.get_peft_model(
+            model,
+            max_seq_length=self.max_seq_length,  # 最大上下文(序列)长度
+            r=16,  # LoRA 的秩,控制适配器的复杂度
+            target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
+                          "gate_proj", "up_proj", "down_proj"],  # 应用 LoRA 的目标模块
+            lora_alpha=16,  # LoRA 的 alpha 参数,控制适配器的缩放
+            lora_dropout=0,  # LoRA 的 dropout 率,设置为0以优化性能
+            bias="none",     # 是否在 LoRA 中添加偏置,设置为 "none" 以优化性能
+            use_gradient_checkpointing="unsloth",  # 使用梯度检查点以节省显存,对于非常长的上下文,使用 True 或 "unsloth"
+            random_state=3407,  # 随机种子,确保实验可复现
+            use_rslora=False,  # 是否使用 rank stabilized LoRA,当前不支持
+            loftq_config=None,  # LoftQ 配置,当前不支持
+        )
+
+        return model, tokenizer
+
+    def load_data(self, train_data_path):
+        # 加载训练集和测试集
+        train_dataset = load_dataset("json", data_files={"train": train_data_path}, split="train")
+
+        # train_data_path: 训练数据路径,格式为 JSONL
+        return train_dataset
+
+    def train(self, model, tokenizer, train_dataset):
+        print("is_bfloat16_supported()=", is_bfloat16_supported())
+        
+        # 监控显存使用情况
+        print(f"Reserved memory: {torch.cuda.memory_reserved()}")
+        print(f"Allocated memory: {torch.cuda.memory_allocated()}")
+
+        # 启用 pin_memory  2025年3月7日未能验证通过
+        train_loader = torch.utils.data.DataLoader(
+            train_dataset, batch_size=1, shuffle=True, pin_memory=True  
+        )
+        
+        # 释放未使用的显存
+        torch.cuda.empty_cache()
+
+        training_args = GRPOConfig(
+            use_vllm = True, # use vLLM for fast inference!
+            learning_rate = 5e-6,
+            adam_beta1 = 0.9,
+            adam_beta2 = 0.99,
+            weight_decay = 0.1,
+            warmup_ratio = 0.1,
+            lr_scheduler_type = "cosine",
+            optim ="adamw_8bit", # "adamw_8bit" if device == "cuda" else "adamw_torch",  # CPU 使用 adamw_torch
+            logging_steps = 1,
+            bf16 = is_bfloat16_supported(),
+            fp16 = not is_bfloat16_supported(),
+            per_device_train_batch_size = 1,
+            gradient_accumulation_steps = 1, # Increase to 4 for smoother training
+            num_generations = 128, # 256 # 每次生成 4 个输出
+            max_prompt_length = 128, # 256 # 输入提示的最大长度
+            max_completion_length = 128,# 200 # 生成内容的最大长度
+            num_train_epochs = 1, # Set to 1 for a full training run
+            max_steps = 10,  # 250
+            save_steps = 10, # 250
+            max_grad_norm = 0.1,
+            report_to = "none", # Can use Weights & Biases
+            output_dir = os.path.join('..', 'models',"outputs"),
+        )
+
+        # 初始化 SFTTrainer
+        trainer = GRPOTrainer(
+            model = model,
+            processing_class = tokenizer,
+            reward_funcs = [
+                xmlcount_reward_func,
+                soft_format_reward_func,
+                strict_format_reward_func,
+                int_reward_func,
+                correctness_reward_func,
+            ],
+            args = training_args,
+            train_dataset = train_dataset,
+        )
+        
+        # 训练模型
+        trainer.train()
+        
+        return model
+
+    def save_model(self, model, tokenizer, save_path):
+        # 保存模型和分词器
+        model.save_pretrained(save_path)
+        tokenizer.save_pretrained(save_path)
+        print(f"Model saved to {save_path}")
+
+if __name__ == "__main__":
+    # 配置参数
+    model_name = os.path.join('..', 'models', 'pretrained', 'DeepSeek-R1-Distill-Qwen-1.5B')
+    # model_name: 预训练模型的路径
+    max_seq_length = 512  # 单次会话(single session) 的最大 token 长度,一个token大约3-4 字节(Byte)
+    dtype = torch.float16  # 数据类型
+    load_in_4bit = True  # 是否以4位精度加载模型
+    lora_rank=16
+
+    # 定义训练集和测试集路径
+    train_data_path = os.path.join('..', 'data', 'processed', 'train.jsonl')
+    # train_data_path: 训练数据路径
+
+    try:
+        # 设置环境变量
+        # 单机多卡
+        os.environ['RANK'] = '0' # 第一张卡的 rank
+        os.environ['WORLD_SIZE'] = '1'  # 总共有 1 张卡
+        os.environ['MASTER_ADDR'] = 'localhost'
+        os.environ['MASTER_PORT'] = '12345'
+        # 多机多卡
+        # export RANK=0  # 第一台机器的 rank
+        # export WORLD_SIZE=4  # 总共有 4 台机器
+        # export MASTER_ADDR=<主节点 IP>
+        # export MASTER_PORT=12345
+
+        # 初始化进程组
+        dist.init_process_group(backend='nccl', init_method='env://')
+        # 初始化 ModelTrainer
+        trainer = ModelTrainer(model_name, max_seq_length, dtype, load_in_4bit,lora_rank)
+        
+        # 加载模型和分词器
+        model, tokenizer = trainer.load_model()
+
+        # 加载数据集
+        train_dataset = trainer.load_data(train_data_path)
+
+        # 训练模型
+        model = trainer.train(model, tokenizer, train_dataset)
+
+        # 保存模型
+        save_path = os.path.join('..', 'models', 'trained', 'DeepSeek-R1-Distill-Qwen-1.5B-GRPO')
+        trainer.save_model(model, tokenizer, save_path)
+    finally:
+        # 确保进程组被销毁
+        if dist.is_initialized():
+            dist.destroy_process_group()