Parcourir la source

修改训练代码为train_model_grpo_v1.2.py 以解决训练输出未达预期问题

zhouyang.xie il y a 2 mois
Parent
commit
dc546bc9b7
1 fichiers modifiés avec 373 ajouts et 0 suppressions
  1. 373 0
      src/train_model_grpo_v1.2.py

+ 373 - 0
src/train_model_grpo_v1.2.py

@@ -0,0 +1,373 @@
+# train_model_grpo_v1.py
+
+import os
+import torch
+import torch.distributed as dist
+from unsloth import FastLanguageModel
+from unsloth import is_bfloat16_supported
+from trl import GRPOConfig, GRPOTrainer
+from datasets import load_dataset
+from conf_train import Config, load_config  # 导入配置文件
+import re
+from transformers import LongformerTokenizer, LongformerModel  # 分词模型最大支持 4096 个token
+import numpy as np
+
+
+class ModelTrainer:
+    def __init__(self, config: Config):
+        """
+        初始化 ModelTrainer 类,加载配置参数。
+        :param config: 配置对象,包含模型训练所需的参数
+        """
+        self.config: Config = config
+        self.model_name = config.model_name
+        self.max_seq_length = config.max_seq_length
+        self.dtype = torch.float16 if config.dtype == "float16" else torch.bfloat16
+        self.load_in_4bit = config.load_in_4bit
+        self.fast_inference = config.fast_inference
+        self.lora_rank = config.lora_rank
+        self.gpu_memory_utilization = config.gpu_memory_utilization
+        # 初始化 Longformer 模型和分词器
+        self.tokenizer = LongformerTokenizer.from_pretrained(f'../models/allenai/longformer-base-4096')
+        self.longformer_model = LongformerModel.from_pretrained(f'../models/allenai/longformer-base-4096')
+
+    def load_model(self):
+        """
+        加载预训练模型和分词器。
+        :return: 返回加载的模型和分词器
+        """
+        model, tokenizer = FastLanguageModel.from_pretrained(
+            model_name=self.model_name,
+            max_seq_length=self.max_seq_length,
+            load_in_4bit=self.load_in_4bit,  # False for LoRA 16bit
+            dtype=self.dtype,
+            fast_inference=self.fast_inference,
+            max_lora_rank=self.lora_rank,
+            gpu_memory_utilization=self.gpu_memory_utilization,
+        )
+
+        model = model.to_empty(device='cuda')
+
+        # 初始化模型的权重
+        for param in model.parameters():
+            if param.is_meta:
+                param.data = torch.randn_like(param)
+
+        # 添加 LoRA 适配器
+        model = FastLanguageModel.get_peft_model(
+            model,
+            max_seq_length=self.max_seq_length,
+            r=self.lora_rank,  # Choose any number > 0! Suggested 8, 16, 32, 64, 128
+            target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
+                           "gate_proj", "up_proj", "down_proj"],  # Remove QKVO if out of memory
+            lora_alpha=16,
+            lora_dropout=0,  # Supports any, but = 0 is optimized
+            bias="none",  # Supports any, but = "none" is optimized
+            use_gradient_checkpointing="unsloth",  # True or "unsloth" for very long context
+            random_state=3407,
+            use_rslora=False,  # We support rank stabilized LoRA
+            loftq_config=None,  # And LoftQ
+        )
+
+        return model, tokenizer
+
+    def load_data(self, train_data_path):
+        """
+        加载训练数据集。
+        :param train_data_path: 训练数据路径
+        :return: 返回加载的训练数据集
+        """
+        with open(train_data_path, 'r') as f:
+            train_dataset = load_dataset("json", data_files={"train": train_data_path}, split="train")
+            print("train_dataset -->\n", train_dataset)
+            # 打印第一条数据,检查格式是否正确
+            print("First example in train_dataset:", train_dataset[0])
+        return train_dataset
+
+    def train(self, model, tokenizer, train_dataset):
+        """
+        训练模型。
+        :param model: 预训练模型
+        :param tokenizer: 分词器
+        :param train_dataset: 训练数据集
+        :return: 返回训练后的模型
+        """
+        print("is_bfloat16_supported()=", is_bfloat16_supported())
+        print(f"Reserved memory: {torch.cuda.memory_reserved()}")
+        print(f"Allocated memory: {torch.cuda.memory_allocated()}")
+
+        train_loader = torch.utils.data.DataLoader(
+            train_dataset, batch_size=1, shuffle=True, pin_memory=True
+        )
+
+        torch.cuda.empty_cache()
+        print("self.config.learning_rate=", float(self.config.learning_rate))
+        training_args = GRPOConfig(
+            use_vllm=self.config.use_vllm,
+            learning_rate=float(self.config.learning_rate),
+            adam_beta1=self.config.adam_beta1,
+            adam_beta2=self.config.adam_beta2,
+            weight_decay=self.config.weight_decay,
+            warmup_ratio=self.config.warmup_ratio,
+            lr_scheduler_type=self.config.lr_scheduler_type,
+            optim=self.config.optim,
+            logging_steps=self.config.logging_steps,
+            bf16=is_bfloat16_supported(),
+            fp16=not is_bfloat16_supported(),
+            per_device_train_batch_size=self.config.per_device_train_batch_size,
+            gradient_accumulation_steps=self.config.gradient_accumulation_steps,
+            num_generations=self.config.num_generations,
+            max_prompt_length=self.config.max_prompt_length,
+            max_completion_length=self.config.max_completion_length,
+            num_train_epochs=self.config.num_train_epochs,
+            max_steps=self.config.max_steps,
+            save_steps=self.config.save_steps,
+            max_grad_norm=self.config.max_grad_norm,
+            report_to=self.config.report_to,
+            output_dir=self.config.output_dir,
+        )
+
+        trainer = GRPOTrainer(
+            model=model,
+            processing_class=tokenizer,  # 用于处理输入文本的分词器(tokenizer)
+            reward_funcs=[
+                self.xmlcount_reward_func,  # XML 标签完整性奖励函数
+                self.soft_format_reward_func,  # 软格式奖励函数
+                self.strict_format_reward_func,  # 严格格式奖励函数
+                self.int_reward_func,  # 整数奖励函数
+                self.correctness_reward_func,  # 正确性奖励函数
+                self.semantic_correctness_reward_func,  # 语义正确性奖励函数
+                self.reasoning_quality_reward_func,  # 推理质量奖励函数
+                self.combined_reward_func,  # 综合奖励函数
+            ],
+            args=training_args,  # 定义的训练超参数
+            train_dataset=train_dataset,  # 训练数据集
+        )
+
+        trainer.train()
+        return model
+
+    def save_model(self, model, tokenizer, save_path):
+        """
+        保存训练后的模型和分词器。
+        :param model: 训练后的模型
+        :param tokenizer: 分词器
+        :param save_path: 保存路径
+        """
+        model.save_pretrained(save_path)
+        tokenizer.save_pretrained(save_path)
+        print(f"Model saved to {save_path}")
+
+    @staticmethod
+    def cosine_similarity(vec1, vec2):
+        """
+        计算两个向量的余弦相似度。
+        :param vec1: 第一个向量,形状为 (1, 768)
+        :param vec2: 第二个向量,形状为 (1, 768)
+        :return: 余弦相似度
+        """
+        vec1 = vec1.squeeze()  # 形状从 (1, 768) 变为 (768,)
+        vec2 = vec2.squeeze()  # 形状从 (1, 768) 变为 (768,)
+        return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
+
+    def semantic_correctness_reward_func(self, prompts, completions, answer, **kwargs):
+        """
+        使用 Longformer 计算生成答案与标准答案的语义相似度。
+        """
+        responses = [completion[0]['content'] for completion in completions]
+        extracted_responses = [self.extract_xml_answer(r) for r in responses]
+        scores = []
+        for resp, ans in zip(extracted_responses, answer):
+            # 截断文本,确保长度不超过 4096
+            resp = self.tokenizer.decode(self.tokenizer.encode(resp, truncation=True, max_length=4096))
+            ans = self.tokenizer.decode(self.tokenizer.encode(ans, truncation=True, max_length=4096))
+            # 编码生成答案和标准答案
+            inputs_resp = self.tokenizer(resp, return_tensors='pt', padding=True, truncation=True, max_length=4096)
+            inputs_ans = self.tokenizer(ans, return_tensors='pt', padding=True, truncation=True, max_length=4096)
+            with torch.no_grad():
+                outputs_resp = self.longformer_model(**inputs_resp).last_hidden_state.mean(dim=1)  # 形状为 (1, 768)
+                outputs_ans = self.longformer_model(**inputs_ans).last_hidden_state.mean(dim=1)  # 形状为 (1, 768)
+            # 计算余弦相似度
+            similarity = self.cosine_similarity(outputs_resp.numpy(), outputs_ans.numpy())
+            scores.append(similarity)
+        return scores
+
+    def combined_reward_func(self, prompts, completions, answer, **kwargs):
+        """
+        综合多个奖励函数,动态调整权重。
+        :param prompts: 输入提示
+        :param completions: 模型生成的补全内容
+        :param answer: 标准答案
+        :return: 综合得分列表
+        """
+        # 计算各奖励函数的得分
+        format_score = self.strict_format_reward_func(completions)
+        semantic_score = self.semantic_correctness_reward_func(prompts, completions, answer)
+        correctness_score = self.correctness_reward_func(prompts, completions, answer)
+
+        # 动态调整权重
+        combined_scores = []
+        for fs, ss, cs in zip(format_score, semantic_score, correctness_score):
+            if cs == 2.0:  # 答案完全正确
+                combined_scores.append(fs * 0.2 + ss * 0.3 + cs * 0.5)
+            else:  # 答案不完全正确
+                combined_scores.append(fs * 0.4 + ss * 0.4 + cs * 0.2)
+        return combined_scores
+
+    @staticmethod
+    def reasoning_quality_reward_func(completions, **kwargs):
+        """
+        检查推理过程的质量。
+        :param completions: 模型生成的补全内容
+        :return: 推理过程质量得分列表
+        """
+        responses = [completion[0]["content"] for completion in completions]
+        scores = []
+        for response in responses:
+            reasoning_match = re.search(r"<reasoning>\n(.+?)\n</reasoning>", response, re.DOTALL)
+            if reasoning_match:
+                reasoning_content = reasoning_match.group(1).strip()
+                # 简单检查推理内容是否包含关键词
+                if "诊断" in reasoning_content and "原因" in reasoning_content:
+                    scores.append(1.0)
+                else:
+                    scores.append(0.5)
+            else:
+                scores.append(0.0)
+        return scores
+
+    @staticmethod
+    def extract_xml_answer(text: str) -> str:
+        """
+        从文本中提取 XML 格式的答案。
+        :param text: 包含 XML 格式的文本
+        :return: 提取的答案
+        """
+        try:
+            answer = text.split("<answer>")[-1]
+            answer = answer.split("</answer>")[0]
+            return answer.strip()
+        except Exception as e:
+            print(f"Error extracting XML answer: {e}")
+            return ""  # 返回空字符串或其他默认值
+
+    @staticmethod
+    def count_xml(text) -> float:
+        """
+        计算 XML 标签的数量和完整性。
+        :param text: 包含 XML 格式的文本
+        :return: XML 标签的完整性得分
+        """
+        count = 0.0
+        if text.count("<reasoning>\n") == 1:
+            count += 0.125
+        if text.count("\n</reasoning>\n") == 1:
+            count += 0.125
+        if text.count("\n<answer>\n") == 1:
+            count += 0.125
+            count -= len(text.split("\n</answer>\n")[-1]) * 0.001
+        if text.count("\n</answer>") == 1:
+            count += 0.125
+            count -= (len(text.split("\n</answer>")[-1]) - 1) * 0.001
+        return count
+
+    @staticmethod
+    def xmlcount_reward_func(completions, **kwargs):
+        """
+        计算 XML 标签的完整性得分。
+        :param completions: 模型生成的补全内容
+        :return: XML 标签的完整性得分列表
+        """
+        contents = [completion[0]["content"] for completion in completions]
+        return [ModelTrainer.count_xml(c) for c in contents]
+
+    @staticmethod
+    def soft_format_reward_func(completions, **kwargs):
+        """
+        检查补全内容是否符合软格式要求。
+        :param completions: 模型生成的补全内容
+        :return: 符合软格式要求的得分列表
+        """
+        pattern = r"<reasoning>.*?</reasoning>\s*<answer>.*?</answer>"
+        responses = [completion[0]["content"] for completion in completions]
+        matches = [re.match(pattern, r) for r in responses]
+        return [0.5 if match else 0.0 for match in matches]
+
+    @staticmethod
+    def strict_format_reward_func(completions, **kwargs):
+        """
+        检查响应是否符合严格的 XML 格式要求,并确保标签内容非空。
+        :param completions: 模型生成的补全内容
+        :return: 符合严格格式要求的得分列表
+        """
+        pattern = r"^<reasoning>\n(.+?)\n</reasoning>\n<answer>\n(.+?)\n</answer>\n$"
+        responses = [completion[0]["content"] for completion in completions]
+        scores = []
+        for response in responses:
+            match = re.match(pattern, response, re.DOTALL)
+            if match:
+                reasoning_content = match.group(1).strip()
+                answer_content = match.group(2).strip()
+                # 检查内容是否非空
+                if reasoning_content and answer_content:
+                    scores.append(1.0)  # 格式和内容均符合要求
+                else:
+                    scores.append(0.5)  # 格式符合但内容为空
+            else:
+                scores.append(0.0)  # 格式不符合
+        return scores
+
+    @staticmethod
+    def int_reward_func(completions, **kwargs):
+        """
+        检查补全内容是否包含整数。
+        :param completions: 模型生成的补全内容
+        :return: 包含整数的得分列表
+        """
+        responses = [completion[0]['content'] for completion in completions]
+        extracted_responses = [ModelTrainer.extract_xml_answer(r) for r in responses]
+        return [0.5 if r.isdigit() else 0.0 for r in extracted_responses]
+
+    @staticmethod
+    def correctness_reward_func(prompts, completions, answer, **kwargs):
+        """
+        检查补全内容是否正确。
+        :param prompts: 输入提示
+        :param completions: 模型生成的补全内容
+        :param answer: 正确答案
+        :return: 补全内容正确的得分列表
+        """
+        print("completions : \n ", completions)
+        responses = [completion[0]['content'] for completion in completions]
+        q = prompts[0][-1]['content']
+        extracted_responses = [ModelTrainer.extract_xml_answer(r) for r in responses]
+        print('-' * 20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}")
+        return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)]
+
+
+if __name__ == "__main__":
+    try:
+        # 加载配置文件
+        config = load_config(f"../conf/conf_train.yaml")
+        print("train config:\n", config)
+
+        # 初始化 ModelTrainer
+        trainer = ModelTrainer(config)
+
+        # 加载模型和分词器
+        model, tokenizer = trainer.load_model()
+
+        # 加载数据集
+        train_dataset = trainer.load_data(config.train_data_path)
+
+        # 训练模型
+        model = trainer.train(model, tokenizer, train_dataset)
+
+        # 保存模型
+        trainer.save_model(model, tokenizer, config.save_path)
+
+        print("Training completed.")
+    except Exception as e:
+        print("exception \n ", e)
+    finally:
+        print("end")