Ver Fonte

换用github jwjohns/unsloth-GRPO-qwen2.5 验证GRPO训练模型

zhouyang.xie há 2 meses atrás
pai
commit
f9dc2bb16f
3 ficheiros alterados com 230 adições e 372 exclusões
  1. 2 0
      conf/conf_train.yaml
  2. 2 0
      src/conf_train.py
  3. 226 372
      src/train_model_grpo_v1.2.py

+ 2 - 0
conf/conf_train.yaml

@@ -1,3 +1,5 @@
+# conf_train.yaml
+
 # 模型配置
 model_name: "../models/pretrained/DeepSeek-R1-Distill-Qwen-1.5B"
 max_seq_length: 512  # 2048 单次会话的最大 token 长度

+ 2 - 0
src/conf_train.py

@@ -1,3 +1,5 @@
+# conf_train.py
+
 import yaml
 from dataclasses import dataclass
 

+ 226 - 372
src/train_model_grpo_v1.2.py

@@ -1,295 +1,179 @@
-# train_model_grpo_v1.py
-
-import os
-import torch
-import torch.distributed as dist
-from unsloth import FastLanguageModel
-from unsloth import is_bfloat16_supported
-from trl import GRPOConfig, GRPOTrainer
-from datasets import load_dataset
-from conf_train import Config, load_config  # 导入配置文件
+#!/usr/bin/env python3
 import re
-# from transformers import BertTokenizer, BertModel  # 分词模型最大支持 512 个token
-from transformers import LongformerTokenizer, LongformerModel # 分词模型最大支持 4096 个token
-import numpy as np
-from datasets import load_dataset, Dataset
+import torch
+import os
 import json
-
-class ModelTrainer:
-    def __init__(self, config: Config):
-        """
-        初始化 ModelTrainer 类,加载配置参数。
-        :param config: 配置对象,包含模型训练所需的参数
-        """
-        self.config: Config = config
-        self.model_name = config.model_name
-        self.max_seq_length = config.max_seq_length
-        self.dtype = torch.float16 if config.dtype == "float16" else torch.bfloat16
-        self.load_in_4bit = config.load_in_4bit
-        self.fast_inference = config.fast_inference
-        self.lora_rank = config.lora_rank
-        self.gpu_memory_utilization = config.gpu_memory_utilization
-        # 初始化 BERT 模型和分词器
-        self.tokenizer = LongformerTokenizer.from_pretrained(f'../models/allenai/longformer-base-4096')
-        self.longformer_model = LongformerModel.from_pretrained(f'../models/allenai/longformer-base-4096')
-
-    def load_model(self):
-        """
-        加载预训练模型和分词器。
-        :return: 返回加载的模型和分词器
-        """
-        model, tokenizer = FastLanguageModel.from_pretrained(
-            model_name=self.model_name,
-            max_seq_length=self.max_seq_length,
-            load_in_4bit=self.load_in_4bit, # False for LoRA 16bit
-            dtype=self.dtype,
-            fast_inference=self.fast_inference,
-            max_lora_rank=self.lora_rank,
-            gpu_memory_utilization=self.gpu_memory_utilization,
-        )
-
-        model = model.to_empty(device='cuda')
-
-        # 初始化模型的权重
-        for param in model.parameters():
-            if param.is_meta:
-                param.data = torch.randn_like(param)
-
-        # 添加 LoRA 适配器
-        model = FastLanguageModel.get_peft_model(
-            model,
-            max_seq_length=self.max_seq_length,
-            r=self.lora_rank, # Choose any number>0!suggested 8,16,32,64,128
-            target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
-                          "gate_proj", "up_proj", "down_proj"],  # Remove QKVO if out of memory
-            lora_alpha=16,
-            lora_dropout=0, #Supports any, but = 0 is optimized
-            bias="none", # Supports any, but = "none" is optimized
-            #[NEW]"unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
-            use_gradient_checkpointing="unsloth",  # True or "unsloth" for very long context
-            random_state=3407,
-            use_rslora=False,  # We support rank stabilized LoRA
-            loftq_config=None,  # And LoftQ
-        )
-
-        return model, tokenizer
-
-    def load_data(self, train_data_path):
+from unsloth import FastLanguageModel, PatchFastRL, is_bfloat16_supported
+from datasets import Dataset
+from trl import GRPOConfig, GRPOTrainer
+from vllm import SamplingParams
+import trl.trainer.grpo_trainer
+from conf_train import load_config
+
+class GRPOTrainerWrapper:
+    """
+    Wrapper class for GRPO training with object-oriented design.
+    """
+    
+    # Constants
+    SYSTEM_PROMPT = """
+    Respond in the following format:
+    <reasoning>
+    ...
+    </reasoning>
+    <answer>
+    ...
+    </answer>
+    """
+    
+    XML_COT_FORMAT = """\
+    <reasoning>
+    {reasoning}
+    </reasoning>
+    <answer>
+    {answer}
+    </answer>
+    """
+    
+    def __init__(self, config):
         """
-        加载训练数据集。
-        :param train_data_path: 训练数据路径
-        :return: 返回加载的训练数据集
+        Initialize the trainer with configuration.
         """
-
-        data = []
-        with open(train_data_path, 'r') as f:
-            for line in f:
-                data.append(json.loads(line))
+        self.config = config
+        self.model = None
+        self.tokenizer = None
+        self.trainer = None
         
-        # 将列表转换为 HuggingFace Dataset 对象
-        train_dataset = Dataset.from_list(data)
-
-        return train_dataset
+        # Enable Unsloth's CLI training metrics visualization
+        os.environ["UNSLOTH_DISPLAY_METRICS"] = "true"
+        
+        # Apply patch
+        PatchFastRL("GRPO", FastLanguageModel)
+        
+        # Monkey patch the validation in the GRPOTrainer
+        self._patch_grpo_trainer()
+    
+    def _patch_grpo_trainer(self):
+        """
+        Monkey patch the GRPOTrainer to bypass the divisibility check.
+        """
+        original_init = trl.trainer.grpo_trainer.GRPOTrainer.__init__
+
+        def patched_init(self, *args, **kwargs):
+            try:
+                original_init(self, *args, **kwargs)
+            except ValueError as e:
+                if "evenly divisible by the number of generations per prompt" in str(e):
+                    print("Bypassing TRL's batch divisibility check...")
+                    # Continue with initialization despite the error
+                    self.args = kwargs.get("args")
+                    self.model = kwargs.get("model")
+                    self.processing_class = kwargs.get("processing_class")
+                    self.reward_funcs = kwargs.get("reward_funcs")
+                    self.train_dataset = kwargs.get("train_dataset")
+                    # Set up necessary trainer components without the check
+                    self._setup_trainer()
+                else:
+                    raise e
 
-    def train(self, model, tokenizer, train_dataset):
+        trl.trainer.grpo_trainer.GRPOTrainer.__init__ = patched_init
+    
+    def load_model(self):
         """
-        训练模型。
-        :param model: 预训练模型
-        :param tokenizer: 分词器
-        :param train_dataset: 训练数据集
-        :return: 返回训练后的模型
+        Load the model and tokenizer.
         """
-        print("is_bfloat16_supported()=", is_bfloat16_supported())
-        print(f"Reserved memory: {torch.cuda.memory_reserved()}")
-        print(f"Allocated memory: {torch.cuda.memory_allocated()}")
-
-        train_loader = torch.utils.data.DataLoader(
-            train_dataset, batch_size=1, shuffle=True, pin_memory=True
+        self.model, self.tokenizer = FastLanguageModel.from_pretrained(
+            model_name=self.config.model_name,
+            max_seq_length=self.config.max_seq_length,
+            load_in_4bit=self.config.load_in_4bit,
+            fast_inference=self.config.fast_inference,
+            max_lora_rank=self.config.lora_rank,
+            gpu_memory_utilization=self.config.gpu_memory_utilization,
         )
 
-        torch.cuda.empty_cache()
-        print("self.config.learning_rate=", float(self.config.learning_rate))
-        training_args = GRPOConfig(
-            use_vllm=self.config.use_vllm,
-            learning_rate=float(self.config.learning_rate),
-            adam_beta1=self.config.adam_beta1,
-            adam_beta2=self.config.adam_beta2,
-            weight_decay=self.config.weight_decay,
-            warmup_ratio=self.config.warmup_ratio,
-            lr_scheduler_type=self.config.lr_scheduler_type,
-            optim=self.config.optim,
-            logging_steps=self.config.logging_steps,
-            bf16=is_bfloat16_supported(),
-            fp16=not is_bfloat16_supported(),
-            per_device_train_batch_size=self.config.per_device_train_batch_size,
-            gradient_accumulation_steps=self.config.gradient_accumulation_steps,
-            num_generations=self.config.num_generations,
-            max_prompt_length=self.config.max_prompt_length,
-            max_completion_length=self.config.max_completion_length,
-            num_train_epochs=self.config.num_train_epochs,
-            max_steps=self.config.max_steps,
-            save_steps=self.config.save_steps,
-            max_grad_norm=self.config.max_grad_norm,
-            report_to=self.config.report_to,
-            output_dir=self.config.output_dir,
+        self.model = FastLanguageModel.get_peft_model(
+            self.model,
+            r=self.config.lora_rank,
+            target_modules=[
+                "q_proj", "k_proj", "v_proj", "o_proj",
+                "gate_proj", "up_proj", "down_proj",
+            ],
+            lora_alpha=self.config.lora_rank,
+            use_gradient_checkpointing="unsloth",
+            random_state=3407,
         )
-
+    
+    @staticmethod
+    def extract_xml_answer(text: str) -> str:
         """
-        PyTorch 的分布式进程组已初始化,但并行模式不等于 “分布式并行模式(ParallelMode.DISTRIBUTED)”。
-        为了使用 PyTorch 的分布式数据并行(DDP),请使用 python -m torch.distributed.launch 来启动你的脚本。
+        Extract answer from XML formatted text.
         """
+        answer = text.split("<answer>")[-1]
+        answer = answer.split("</answer>")[0]
+        return answer.strip()
 
-        trainer = GRPOTrainer(
-            model=model,
-            processing_class=tokenizer, # 用于处理输入文本的分词器(tokenizer)。它将文本转换为模型可以理解的数字格式。
-            reward_funcs=[
-                self.xmlcount_reward_func, # 某种特定的基于XML计数的奖励函数
-                self.soft_format_reward_func, # 基于软格式的奖励函数。
-                self.strict_format_reward_func, # 基于严格格式的奖励函数。
-                self.int_reward_func,  # 整数奖励函数。
-                self.correctness_reward_func, # 基于输出正确性的奖励函数
-                ###
-                # self.semantic_correctness_reward_func, # 语义正确性奖励函数
-                # self.reasoning_quality_reward_func,  # 推理质量奖励函数
-                # self.combined_reward_func,  # combined_reward_func
-            ],   # 这是一个奖励函数的列表,决定了模型输出的好坏。在GRPO训练中,奖励函数通常用来评估模型输出的质量。
-            args=training_args, # 定义的训练超参数。
-            train_dataset=train_dataset, # 训练数据集,
-        )
-
-        trainer.train()
-        return model
-
-    def save_model(self, model, tokenizer, save_path):
+    @staticmethod
+    def extract_hash_answer(text: str) -> str | None:
         """
-        保存训练后的模型和分词器。
-        :param model: 训练后的模型
-        :param tokenizer: 分词器
-        :param save_path: 保存路径
+        Extract answer from hash formatted text.
         """
+        if "####" not in text:
+            return None
+        return text.split("####")[1].strip()
+    
+    def load_dataset(self) -> Dataset:
         """
-        # Save to 8bit Q8_0
-        if False: model.save_pretrained_gguf("model", tokenizer,)
-        # Remember to go to https://huggingface.co/settings/tokens for a token!
-        # And change hf to your username!
-        if False: model.push_to_hub_gguf("hf/model", tokenizer, token = "")
-
-        # Save to 16bit GGUF
-        if False: model.save_pretrained_gguf("model", tokenizer, quantization_method = "f16")
-        if False: model.push_to_hub_gguf("hf/model", tokenizer, quantization_method = "f16", token = "")
-
-        # Save to q4_k_m GGUF
-        if False: model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m")
-        if False: model.push_to_hub_gguf("hf/model", tokenizer, quantization_method = "q4_k_m", token = "")
-
-        ###
-
-        model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",) # save_method = "merged_4bit" Merge to 4bit ; save_method = "lora"  Just LoRA adapters ;
+        Load and prepare the training dataset.
         """
-
-        model.save_pretrained(save_path)
-        tokenizer.save_pretrained(save_path)
+        # Read JSONL file
+        data = []
+        with open(self.config.train_data_path, 'r') as f:
+            for line in f:
+                data.append(json.loads(line))
         
-        print(f"Model saved to {save_path}")
+        # Convert list to HuggingFace Dataset object
+        return Dataset.from_list(data)
     
-    @staticmethod
-    def cosine_similarity(vec1, vec2):
-        """
-        计算两个向量的余弦相似度。
-        :param vec1: 第一个向量,形状为 (1, 768)
-        :param vec2: 第二个向量,形状为 (1, 768)
-        :return: 余弦相似度
-        """
-        # 将 (1, 768) 的矩阵转换为 (768,) 的一维向量
-        vec1 = vec1.squeeze()  # 形状从 (1, 768) 变为 (768,)
-        vec2 = vec2.squeeze()  # 形状从 (1, 768) 变为 (768,)
-        # print(f"vec1 shape: {vec1.shape}, vec2 shape: {vec2.shape}")
-        # 计算余弦相似度
-        return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
+    def correctness_reward_func(self, prompts, completions, answer, **kwargs) -> list[float]:
+        """
+        Reward function for answer correctness.
+        """
+        responses = [completion[0]['content'] for completion in completions]
+        q = prompts[0][-1]['content']
+        extracted_responses = [self.extract_xml_answer(r) for r in responses]
+        print('-'*20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", 
+              f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}")
+        return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)]
 
-    def semantic_correctness_reward_func(self, prompts, completions, answer, **kwargs):
+    def int_reward_func(self, completions, **kwargs) -> list[float]:
         """
-        使用 Longformer 计算生成答案与标准答案的语义相似度。
+        Reward function for integer answers.
         """
         responses = [completion[0]['content'] for completion in completions]
         extracted_responses = [self.extract_xml_answer(r) for r in responses]
-        scores = []
-        for resp, ans in zip(extracted_responses, answer):
-            # 截断文本,确保长度不超过 4096
-            resp = self.tokenizer.decode(self.tokenizer.encode(resp, truncation=True, max_length=4096))
-            ans = self.tokenizer.decode(self.tokenizer.encode(ans, truncation=True, max_length=4096))
-            # 编码生成答案和标准答案
-            inputs_resp = self.tokenizer(resp, return_tensors='pt', padding=True, truncation=True, max_length=4096)
-            inputs_ans = self.tokenizer(ans, return_tensors='pt', padding=True, truncation=True, max_length=4096)
-            with torch.no_grad():
-                outputs_resp = self.longformer_model(**inputs_resp).last_hidden_state.mean(dim=1)  # 形状为 (1, 768)
-                outputs_ans = self.longformer_model(**inputs_ans).last_hidden_state.mean(dim=1)  # 形状为 (1, 768)
-            # 计算余弦相似度
-            similarity = self.cosine_similarity(outputs_resp.numpy(), outputs_ans.numpy())
-            scores.append(similarity)
-        return scores
-    
-    def combined_reward_func(self, prompts, completions, answer, **kwargs):
-        """
-        综合多个奖励函数,动态调整权重。
-        :param prompts: 输入提示
-        :param completions: 模型生成的补全内容
-        :param answer: 标准答案
-        :return: 综合得分列表
-        """
-        # 计算各奖励函数的得分
-        format_score = self.strict_format_reward_func(completions)
-        semantic_score = self.semantic_correctness_reward_func(prompts, completions, answer)
-        correctness_score = self.correctness_reward_func(prompts, completions, answer)
+        return [0.5 if r.isdigit() else 0.0 for r in extracted_responses]
 
-        # 动态调整权重
-        combined_scores = []
-        for fs, ss, cs in zip(format_score, semantic_score, correctness_score):
-            if cs == 2.0:  # 答案完全正确
-                combined_scores.append(fs * 0.2 + ss * 0.3 + cs * 0.5)
-            else:  # 答案不完全正确
-                combined_scores.append(fs * 0.4 + ss * 0.4 + cs * 0.2)
-        return combined_scores
-    
-    @staticmethod
-    def reasoning_quality_reward_func(completions, **kwargs):
+    def strict_format_reward_func(self, completions, **kwargs) -> list[float]:
         """
-        检查推理过程的质量。
-        :param completions: 模型生成的补全内容
-        :return: 推理过程质量得分列表
+        Strict format reward function.
         """
+        pattern = r"^<reasoning>\n.*?\n</reasoning>\n<answer>\n.*?\n</answer>\n$"
         responses = [completion[0]["content"] for completion in completions]
-        scores = []
-        for response in responses:
-            reasoning_match = re.search(r"<reasoning>\n(.+?)\n</reasoning>", response, re.DOTALL)
-            if reasoning_match:
-                reasoning_content = reasoning_match.group(1).strip()
-                # 简单检查推理内容是否包含关键词
-                if "诊断" in reasoning_content and "原因" in reasoning_content:
-                    scores.append(1.0)
-                else:
-                    scores.append(0.5)
-            else:
-                scores.append(0.0)
-        return scores
+        matches = [re.match(pattern, r) for r in responses]
+        return [0.5 if match else 0.0 for match in matches]
 
-    @staticmethod
-    def extract_xml_answer(text: str) -> str:
+    def soft_format_reward_func(self, completions, **kwargs) -> list[float]:
         """
-        从文本中提取 XML 格式的答案。
-        :param text: 包含 XML 格式的文本
-        :return: 提取的答案
+        Soft format reward function.
         """
-        answer = text.split("<answer>")[-1]
-        answer = answer.split("</answer>")[0]
-        return answer.strip()
+        pattern = r"<reasoning>.*?</reasoning>\s*<answer>.*?</answer>"
+        responses = [completion[0]["content"] for completion in completions]
+        matches = [re.match(pattern, r) for r in responses]
+        return [0.5 if match else 0.0 for match in matches]
 
-    @staticmethod
-    def count_xml(text) -> float:
+    def count_xml(self, text) -> float:
         """
-        计算 XML 标签的数量和完整性。
-        :param text: 包含 XML 格式的文本
-        :return: XML 标签的完整性得分
+        Count XML tags in text.
         """
         count = 0.0
         if text.count("<reasoning>\n") == 1:
@@ -298,134 +182,104 @@ class ModelTrainer:
             count += 0.125
         if text.count("\n<answer>\n") == 1:
             count += 0.125
-            count -= len(text.split("\n</answer>\n")[-1]) * 0.001
+            count -= len(text.split("\n</answer>\n")[-1])*0.001
         if text.count("\n</answer>") == 1:
             count += 0.125
-            count -= (len(text.split("\n</answer>")[-1]) - 1) * 0.001
+            count -= (len(text.split("\n</answer>")[-1]) - 1)*0.001
         return count
 
-    @staticmethod
-    def xmlcount_reward_func(completions, **kwargs):
+    def xmlcount_reward_func(self, completions, **kwargs) -> list[float]:
         """
-        计算 XML 标签的完整性得分。
-        :param completions: 模型生成的补全内容
-        :return: XML 标签的完整性得分列表
+        Reward function based on XML tag count.
         """
         contents = [completion[0]["content"] for completion in completions]
-        return [ModelTrainer.count_xml(c) for c in contents]
-
-    @staticmethod
-    def soft_format_reward_func(completions, **kwargs):
-        """
-        检查补全内容是否符合软格式要求。
-        :param completions: 模型生成的补全内容
-        :return: 符合软格式要求的得分列表
-        """
-        pattern = r"<reasoning>.*?</reasoning>\s*<answer>.*?</answer>"
-        responses = [completion[0]["content"] for completion in completions]
-        matches = [re.match(pattern, r) for r in responses]
-        return [0.5 if match else 0.0 for match in matches]
-
-    @staticmethod
-    def strict_format_reward_func(completions, **kwargs):
+        return [self.count_xml(c) for c in contents]
+    
+    def prepare_training_args(self) -> GRPOConfig:
         """
-        检查响应是否符合严格的 XML 格式要求,并确保标签内容非空。
-        :param completions: 模型生成的补全内容
-        :return: 符合严格格式要求的得分列表
+        Prepare training arguments from config.
         """
-        pattern = r"^<reasoning>\n(.+?)\n</reasoning>\n<answer>\n(.+?)\n</answer>\n$"
-        responses = [completion[0]["content"] for completion in completions]
-        scores = []
-        for response in responses:
-            match = re.match(pattern, response, re.DOTALL)
-            if match:
-                reasoning_content = match.group(1).strip()
-                answer_content = match.group(2).strip()
-                # 检查内容是否非空
-                if reasoning_content and answer_content:
-                    scores.append(1.0)  # 格式和内容均符合要求
-                else:
-                    scores.append(0.5)  # 格式符合但内容为空
-            else:
-                scores.append(0.0)  # 格式不符合
-        return scores
-
-    @staticmethod
-    def int_reward_func(completions, **kwargs):
+        return GRPOConfig(
+            use_vllm=self.config.use_vllm,
+            learning_rate=self.config.learning_rate,
+            adam_beta1=self.config.adam_beta1,
+            adam_beta2=self.config.adam_beta2,
+            weight_decay=self.config.weight_decay,
+            warmup_ratio=self.config.warmup_ratio,
+            lr_scheduler_type=self.config.lr_scheduler_type,
+            optim=self.config.optim,
+            logging_steps=self.config.logging_steps,
+            bf16=is_bfloat16_supported(),
+            fp16=not is_bfloat16_supported(),
+            per_device_train_batch_size=self.config.per_device_train_batch_size,
+            gradient_accumulation_steps=self.config.gradient_accumulation_steps,
+            num_generations=self.config.num_generations,
+            max_prompt_length=self.config.max_prompt_length,
+            max_completion_length=self.config.max_completion_length,
+            max_steps=self.config.max_steps,
+            save_steps=self.config.save_steps,
+            max_grad_norm=self.config.max_grad_norm,
+            report_to=self.config.report_to,
+            output_dir=self.config.output_dir,
+            save_total_limit=3,
+            log_level="info",
+            disable_tqdm=False,
+            evaluation_strategy="no",
+        )
+    
+    def initialize_trainer(self, dataset):
         """
-        检查补全内容是否包含整数。
-        :param completions: 模型生成的补全内容
-        :return: 包含整数的得分列表
+        Initialize the GRPO trainer.
         """
-        responses = [completion[0]['content'] for completion in completions]
-        extracted_responses = [ModelTrainer.extract_xml_answer(r) for r in responses]
-        return [0.5 if r.isdigit() else 0.0 for r in extracted_responses]
-
-    @staticmethod
-    def correctness_reward_func(prompts, completions, answer, **kwargs):
+        training_args = self.prepare_training_args()
+        
+        self.trainer = GRPOTrainer(
+            model=self.model,
+            processing_class=self.tokenizer,
+            reward_funcs=[
+                self.xmlcount_reward_func,
+                self.soft_format_reward_func,
+                self.strict_format_reward_func,
+                self.int_reward_func,
+                self.correctness_reward_func,
+            ],
+            args=training_args,
+            train_dataset=dataset,
+        )
+    
+    def train(self):
         """
-        检查补全内容是否正确。
-        :param prompts: 输入提示
-        :param completions: 模型生成的补全内容
-        :param answer: 正确答案
-        :return: 补全内容正确的得分列表
+        Execute the training process.
         """
-        print("completions : \n ",completions)
-        responses = [completion[0]['content'] for completion in completions]
-        q = prompts[0][-1]['content']
-        extracted_responses = [ModelTrainer.extract_xml_answer(r) for r in responses]
-        # print(f"\n Response:\n {responses}",f"\n Extracted:\n {responses}")
-        print('-' * 20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}")
-        return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)]
-
-if __name__ == "__main__":
-    try:
-        # 加载配置文件
-        config = load_config(f"../conf/conf_train.yaml")
-        print("train config:\n",config)
-
-        # 设置环境变量
+        print("Starting GRPO training...")
+        print(f"per_device_train_batch_size = {self.config.per_device_train_batch_size}")
+        print(f"gradient_accumulation_steps = {self.config.gradient_accumulation_steps}")
+        print(f"num_generations = {self.config.num_generations}")
+        print(f"max_steps = {self.config.max_steps}")
+        
+        self.trainer.train()
+    
+    def save_model(self):
         """
-            # 多机多卡
-            # export RANK=0  # 第一台机器的 rank
-            # export WORLD_SIZE=4  # 总共有 4 台机器
-            # export MASTER_ADDR=<主节点 IP>
-            # export MASTER_PORT=12345
-
-            # 单机多卡
-            os.environ['RANK'] = '0'
-            os.environ['WORLD_SIZE'] = '1'
-            os.environ['MASTER_ADDR'] = 'localhost'
-            os.environ['MASTER_PORT'] = '12345'
-
-            # 根据操作系统选择后端
-            backend = 'gloo' if os.name == 'nt' else 'nccl'
-            # 使用文件初始化方法  2025-3-11 成功验证支持windows
-            init_method = f'env://'  # env://  # 文件路径需要所有进程都能访问
-            dist.init_process_group(backend=backend, init_method=init_method)
-            print(f"Initialized distributed training with backend: {backend}")
+        Save the trained model.
         """
+        print(f"Saving model to {self.config.save_path}...")
+        os.makedirs(os.path.dirname(self.config.save_path), exist_ok=True)
+        self.model.save_pretrained(self.config.save_path)
+        self.tokenizer.save_pretrained(self.config.save_path)
+        print("Training complete!")
 
-        # 初始化 ModelTrainer
-        trainer = ModelTrainer(config)
-
-        # 加载模型和分词器
-        model, tokenizer = trainer.load_model()
-
-        # 加载数据集
-        train_dataset = trainer.load_data(config.train_data_path)
-
-        # 训练模型
-        model = trainer.train(model, tokenizer, train_dataset)
+def main():
+    # Load configuration
+    config = load_config()
+    
+    # Initialize and run trainer
+    trainer = GRPOTrainerWrapper(config)
+    trainer.load_model()
+    dataset = trainer.load_dataset()
+    trainer.initialize_trainer(dataset)
+    trainer.train()
+    trainer.save_model()
 
-        # 保存模型
-        trainer.save_model(model, tokenizer, config.save_path)
-        
-        print("Training completed.")
-    except Exception as e:
-        print("exception \n ",e)
-    finally:
-        # # 确保进程组被销毁
-        # if dist.is_initialized():
-        #     dist.destroy_process_group()
-        print("end")
+if __name__ == "__main__":
+    main()