import os
import torch
import torch.distributed as dist
from unsloth import FastLanguageModel
from unsloth import is_bfloat16_supported
from trl import SFTTrainer, GRPOConfig, GRPOTrainer
from datasets import load_dataset
from transformers import TrainingArguments
import re
from datasets import load_dataset, Dataset
from modelscope.msdatasets import MsDataset
# Load and prep dataset
SYSTEM_PROMPT = """
Respond in the following format:
...
...
"""
XML_COT_FORMAT = """\
{reasoning}
{answer}
"""
def extract_xml_answer(text: str) -> str:
answer = text.split("")[-1]
answer = answer.split("")[0]
return answer.strip()
def extract_hash_answer(text: str) -> str | None:
if "####" not in text:
return None
return text.split("####")[1].strip()
# uncomment middle messages for 1-shot prompting
def get_gsm8k_questions(split = "train") -> Dataset:
# data = load_dataset('https://huggingface.co/datasets/openai/gsm8k', 'main')[split] # type: ignore
data = MsDataset.load('openai-mirror/gsm8k', subset_name='main', split=split)
data = data.map(lambda x: { # type: ignore
'prompt': [
{'role': 'system', 'content': SYSTEM_PROMPT},
{'role': 'user', 'content': x['question']}
],
'answer': extract_hash_answer(x['answer'])
}) # type: ignore
return data # type: ignore
dataset = get_gsm8k_questions()
# 方法 1:使用 datasets 库的 to_json 方法
dataset.to_json(os.path.join("..","data","backup", "gsm8k_dataset_for_train.jsonl"), orient="records", lines=True, force_ascii=False)
# Reward functions
def correctness_reward_func(prompts, completions, answer, **kwargs) -> list[float]:
responses = [completion[0]['content'] for completion in completions]
q = prompts[0][-1]['content']
extracted_responses = [extract_xml_answer(r) for r in responses]
print('-'*20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}")
return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)]
def int_reward_func(completions, **kwargs) -> list[float]:
responses = [completion[0]['content'] for completion in completions]
extracted_responses = [extract_xml_answer(r) for r in responses]
return [0.5 if r.isdigit() else 0.0 for r in extracted_responses]
def strict_format_reward_func(completions, **kwargs) -> list[float]:
"""Reward function that checks if the completion has a specific format."""
pattern = r"^\n.*?\n\n\n.*?\n\n$"
responses = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, r) for r in responses]
return [0.5 if match else 0.0 for match in matches]
def soft_format_reward_func(completions, **kwargs) -> list[float]:
"""Reward function that checks if the completion has a specific format."""
pattern = r".*?\s*.*?"
responses = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, r) for r in responses]
return [0.5 if match else 0.0 for match in matches]
def count_xml(text) -> float:
count = 0.0
if text.count("\n") == 1:
count += 0.125
if text.count("\n\n") == 1:
count += 0.125
if text.count("\n\n") == 1:
count += 0.125
count -= len(text.split("\n\n")[-1])*0.001
if text.count("\n") == 1:
count += 0.125
count -= (len(text.split("\n")[-1]) - 1)*0.001
return count
def xmlcount_reward_func(completions, **kwargs) -> list[float]:
contents = [completion[0]["content"] for completion in completions]
return [count_xml(c) for c in contents]
class ModelTrainer:
def __init__(self, model_name, max_seq_length, dtype, load_in_4bit,lora_rank=32):
# 初始化 ModelTrainer 类,设置模型名称、最大序列长度、数据类型和是否以4位加载
self.model_name = model_name
self.max_seq_length = max_seq_length
self.dtype = dtype # dtype: 数据类型,如 torch.float16 或 torch.bfloat16
self.load_in_4bit = load_in_4bit # load_in_4bit: 是否以4位精度加载模型,用于节省显存
self.lora_rank=lora_rank #Larger rank = smarter, but slower
def load_model(self,lora_rank=64):
# 加载预训练模型和分词器
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=self.model_name,
max_seq_length=self.max_seq_length,
load_in_4bit=self.load_in_4bit, # 值为True 以 4 bit量化进行微调,为False LoRA 16bit。这将内存使用量减少了 4 倍,使我们能够在免费的 16GB 内存 GPU 中实际进行微调。4 位量化本质上将权重转换为一组有限的数字以减少内存使用量。这样做的缺点是准确度会下降 1-2%。如果您想要这种微小的额外准确度,请在较大的 GPU(如 H100)上将其设置为 False。
dtype=self.dtype,
fast_inference = True, # Enable vLLM fast inference
max_lora_rank = lora_rank,
gpu_memory_utilization=0.005, # 0.6 # Reduce if out of memory
)
# 将模型移动到设备上
model = model.to_empty(device='cuda') # 使用 to_empty 而不是 to
# 初始化模型的权重
for param in model.parameters():
if param.is_meta:
param.data = torch.randn_like(param) # 随机初始化
# 添加 LoRA 适配器
model = FastLanguageModel.get_peft_model(
model,
max_seq_length=self.max_seq_length, # 最大上下文(序列)长度
r=lora_rank, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"], # 应用 LoRA 的目标模块
lora_alpha=16, # LoRA 的 alpha 参数,控制适配器的缩放
lora_dropout=0, # LoRA 的 dropout 率,设置为0以优化性能
bias="none", # 是否在 LoRA 中添加偏置,设置为 "none" 以优化性能
use_gradient_checkpointing="unsloth", # 使用梯度检查点以节省显存,对于非常长的上下文,使用 True 或 "unsloth"
random_state=3407, # 随机种子,确保实验可复现
use_rslora=False, # 是否使用 rank stabilized LoRA,当前不支持
loftq_config=None, # LoftQ 配置,当前不支持
)
return model, tokenizer
def load_data(self, train_data_path):
# 加载训练集和测试集
with open(train_data_path, 'r') as f:
train_dataset = load_dataset("json", data_files={"train": train_data_path}, split="train")
# train_data_path: 训练数据路径,格式为 JSONL
return train_dataset
def train(self, model, tokenizer, train_dataset):
print("is_bfloat16_supported()=", is_bfloat16_supported())
# 监控显存使用情况
print(f"Reserved memory: {torch.cuda.memory_reserved()}")
print(f"Allocated memory: {torch.cuda.memory_allocated()}")
# 启用 pin_memory 2025年3月10日未能验证通过
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=1, shuffle=True, pin_memory=True
)
# 释放未使用的显存
torch.cuda.empty_cache()
training_args = GRPOConfig(
use_vllm = True, # use vLLM for fast inference!
learning_rate = 5e-6,
adam_beta1 = 0.9,
adam_beta2 = 0.99,
weight_decay = 0.1,
warmup_ratio = 0.1,
lr_scheduler_type = "cosine",
optim ="adamw_8bit", # "adamw_8bit" if device == "cuda" else "adamw_torch", # CPU 使用 adamw_torch
logging_steps = 1,
bf16 = is_bfloat16_supported(),
fp16 = not is_bfloat16_supported(),
per_device_train_batch_size = 1,
gradient_accumulation_steps = 1, # Increase to 4 for smoother training
num_generations = 4, # 8 # 每次生成 输出 个数
max_prompt_length = 256, # 256 # 输入提示的最大长度
max_completion_length = 200,# 200 # 生成内容的最大长度
num_train_epochs = 1, # Set to 1 for a full training run
max_steps = 250, # 250
save_steps = 250, # 250
max_grad_norm = 0.1,
report_to = "none", # Can use Weights & Biases
output_dir = os.path.join('..', 'models',"outputs"),
)
# 初始化 SFTTrainer
trainer = GRPOTrainer(
model = model,
processing_class = tokenizer,
reward_funcs = [
xmlcount_reward_func,
soft_format_reward_func,
strict_format_reward_func,
int_reward_func,
correctness_reward_func,
],
args = training_args,
train_dataset = train_dataset,
)
# 训练模型
trainer.train()
return model
def save_model(self, model, tokenizer, save_path):
# 保存模型和分词器
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model saved to {save_path}")
if __name__ == "__main__":
# 配置参数
model_name = os.path.join('..', 'models', 'pretrained', 'DeepSeek-R1-Distill-Qwen-1.5B')
# model_name: 预训练模型的路径
max_seq_length = 512 # 单次会话(single session) 的最大 token 长度,一个token大约3-4 字节(Byte)
dtype = torch.float16 # 数据类型
load_in_4bit = True # 是否以4位精度加载模型
lora_rank=16
# 定义训练集和测试集路径
train_data_path = os.path.join('..', 'data', 'processed', 'train.jsonl')
# train_data_path: 训练数据路径
try:
# 设置环境变量
# 单机多卡
os.environ['RANK'] = '0' # 第一张卡的 rank
os.environ['WORLD_SIZE'] = '1' # 总共有 1 张卡
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12345'
# 多机多卡
# export RANK=0 # 第一台机器的 rank
# export WORLD_SIZE=4 # 总共有 4 台机器
# export MASTER_ADDR=<主节点 IP>
# export MASTER_PORT=12345
# 初始化进程组
# dist.init_process_group(backend='nccl', init_method='env://')
# 初始化 ModelTrainer
trainer = ModelTrainer(model_name, max_seq_length, dtype, load_in_4bit,lora_rank)
# 加载模型和分词器
model, tokenizer = trainer.load_model(lora_rank)
# 加载数据集
train_dataset = trainer.load_data(train_data_path)
# 训练模型
model = trainer.train(model, tokenizer, train_dataset)
# 保存模型
save_path = os.path.join('..', 'models', 'trained', 'DeepSeek-R1-Distill-Qwen-1.5B-GRPO')
trainer.save_model(model, tokenizer, save_path)
finally:
# 确保进程组被销毁
if dist.is_initialized():
dist.destroy_process_group()
print("train finally")