# train_model_grpo_v1.py
import os
import torch
import torch.distributed as dist
from unsloth import FastLanguageModel
from unsloth import is_bfloat16_supported
from trl import GRPOConfig, GRPOTrainer
from datasets import load_dataset
from conf_train import Config, load_config # 导入配置文件
import re
from transformers import LongformerTokenizer, LongformerModel # 分词模型最大支持 4096 个token
import numpy as np
class ModelTrainer:
def __init__(self, config: Config):
"""
初始化 ModelTrainer 类,加载配置参数。
:param config: 配置对象,包含模型训练所需的参数
"""
self.config: Config = config
self.model_name = config.model_name
self.max_seq_length = config.max_seq_length
self.dtype = torch.float16 if config.dtype == "float16" else torch.bfloat16
self.load_in_4bit = config.load_in_4bit
self.fast_inference = config.fast_inference
self.lora_rank = config.lora_rank
self.gpu_memory_utilization = config.gpu_memory_utilization
# 初始化 Longformer 模型和分词器
self.tokenizer = LongformerTokenizer.from_pretrained(f'../models/allenai/longformer-base-4096')
self.longformer_model = LongformerModel.from_pretrained(f'../models/allenai/longformer-base-4096')
def load_model(self):
"""
加载预训练模型和分词器。
:return: 返回加载的模型和分词器
"""
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=self.model_name,
max_seq_length=self.max_seq_length,
load_in_4bit=self.load_in_4bit, # False for LoRA 16bit
dtype=self.dtype,
fast_inference=self.fast_inference,
max_lora_rank=self.lora_rank,
gpu_memory_utilization=self.gpu_memory_utilization,
)
model = model.to_empty(device='cuda')
# 初始化模型的权重
for param in model.parameters():
if param.is_meta:
param.data = torch.randn_like(param)
# 添加 LoRA 适配器
model = FastLanguageModel.get_peft_model(
model,
max_seq_length=self.max_seq_length,
r=self.lora_rank, # Choose any number > 0! Suggested 8, 16, 32, 64, 128
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"], # Remove QKVO if out of memory
lora_alpha=16,
lora_dropout=0, # Supports any, but = 0 is optimized
bias="none", # Supports any, but = "none" is optimized
use_gradient_checkpointing="unsloth", # True or "unsloth" for very long context
random_state=3407,
use_rslora=False, # We support rank stabilized LoRA
loftq_config=None, # And LoftQ
)
return model, tokenizer
def load_data(self, train_data_path):
"""
加载训练数据集。
:param train_data_path: 训练数据路径
:return: 返回加载的训练数据集
"""
with open(train_data_path, 'r') as f:
train_dataset = load_dataset("json", data_files={"train": train_data_path}, split="train")
print("train_dataset -->\n", train_dataset)
# 打印第一条数据,检查格式是否正确
print("First example in train_dataset:", train_dataset[0])
return train_dataset
def train(self, model, tokenizer, train_dataset):
"""
训练模型。
:param model: 预训练模型
:param tokenizer: 分词器
:param train_dataset: 训练数据集
:return: 返回训练后的模型
"""
print("is_bfloat16_supported()=", is_bfloat16_supported())
print(f"Reserved memory: {torch.cuda.memory_reserved()}")
print(f"Allocated memory: {torch.cuda.memory_allocated()}")
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=1, shuffle=True, pin_memory=True
)
torch.cuda.empty_cache()
print("self.config.learning_rate=", float(self.config.learning_rate))
training_args = GRPOConfig(
use_vllm=self.config.use_vllm,
learning_rate=float(self.config.learning_rate),
adam_beta1=self.config.adam_beta1,
adam_beta2=self.config.adam_beta2,
weight_decay=self.config.weight_decay,
warmup_ratio=self.config.warmup_ratio,
lr_scheduler_type=self.config.lr_scheduler_type,
optim=self.config.optim,
logging_steps=self.config.logging_steps,
bf16=is_bfloat16_supported(),
fp16=not is_bfloat16_supported(),
per_device_train_batch_size=self.config.per_device_train_batch_size,
gradient_accumulation_steps=self.config.gradient_accumulation_steps,
num_generations=self.config.num_generations,
max_prompt_length=self.config.max_prompt_length,
max_completion_length=self.config.max_completion_length,
num_train_epochs=self.config.num_train_epochs,
max_steps=self.config.max_steps,
save_steps=self.config.save_steps,
max_grad_norm=self.config.max_grad_norm,
report_to=self.config.report_to,
output_dir=self.config.output_dir,
)
trainer = GRPOTrainer(
model=model,
processing_class=tokenizer, # 用于处理输入文本的分词器(tokenizer)
reward_funcs=[
self.xmlcount_reward_func, # XML 标签完整性奖励函数
self.soft_format_reward_func, # 软格式奖励函数
self.strict_format_reward_func, # 严格格式奖励函数
self.int_reward_func, # 整数奖励函数
self.correctness_reward_func, # 正确性奖励函数
self.semantic_correctness_reward_func, # 语义正确性奖励函数
self.reasoning_quality_reward_func, # 推理质量奖励函数
self.combined_reward_func, # 综合奖励函数
],
args=training_args, # 定义的训练超参数
train_dataset=train_dataset, # 训练数据集
)
trainer.train()
return model
def save_model(self, model, tokenizer, save_path):
"""
保存训练后的模型和分词器。
:param model: 训练后的模型
:param tokenizer: 分词器
:param save_path: 保存路径
"""
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model saved to {save_path}")
@staticmethod
def cosine_similarity(vec1, vec2):
"""
计算两个向量的余弦相似度。
:param vec1: 第一个向量,形状为 (1, 768)
:param vec2: 第二个向量,形状为 (1, 768)
:return: 余弦相似度
"""
vec1 = vec1.squeeze() # 形状从 (1, 768) 变为 (768,)
vec2 = vec2.squeeze() # 形状从 (1, 768) 变为 (768,)
return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
def semantic_correctness_reward_func(self, prompts, completions, answer, **kwargs):
"""
使用 Longformer 计算生成答案与标准答案的语义相似度。
"""
responses = [completion[0]['content'] for completion in completions]
extracted_responses = [self.extract_xml_answer(r) for r in responses]
scores = []
for resp, ans in zip(extracted_responses, answer):
# 截断文本,确保长度不超过 4096
resp = self.tokenizer.decode(self.tokenizer.encode(resp, truncation=True, max_length=4096))
ans = self.tokenizer.decode(self.tokenizer.encode(ans, truncation=True, max_length=4096))
# 编码生成答案和标准答案
inputs_resp = self.tokenizer(resp, return_tensors='pt', padding=True, truncation=True, max_length=4096)
inputs_ans = self.tokenizer(ans, return_tensors='pt', padding=True, truncation=True, max_length=4096)
with torch.no_grad():
outputs_resp = self.longformer_model(**inputs_resp).last_hidden_state.mean(dim=1) # 形状为 (1, 768)
outputs_ans = self.longformer_model(**inputs_ans).last_hidden_state.mean(dim=1) # 形状为 (1, 768)
# 计算余弦相似度
similarity = self.cosine_similarity(outputs_resp.numpy(), outputs_ans.numpy())
scores.append(similarity)
return scores
def combined_reward_func(self, prompts, completions, answer, **kwargs):
"""
综合多个奖励函数,动态调整权重。
:param prompts: 输入提示
:param completions: 模型生成的补全内容
:param answer: 标准答案
:return: 综合得分列表
"""
# 计算各奖励函数的得分
format_score = self.strict_format_reward_func(completions)
semantic_score = self.semantic_correctness_reward_func(prompts, completions, answer)
correctness_score = self.correctness_reward_func(prompts, completions, answer)
# 动态调整权重
combined_scores = []
for fs, ss, cs in zip(format_score, semantic_score, correctness_score):
if cs == 2.0: # 答案完全正确
combined_scores.append(fs * 0.2 + ss * 0.3 + cs * 0.5)
else: # 答案不完全正确
combined_scores.append(fs * 0.4 + ss * 0.4 + cs * 0.2)
return combined_scores
@staticmethod
def reasoning_quality_reward_func(completions, **kwargs):
"""
检查推理过程的质量。
:param completions: 模型生成的补全内容
:return: 推理过程质量得分列表
"""
responses = [completion[0]["content"] for completion in completions]
scores = []
for response in responses:
reasoning_match = re.search(r"\n(.+?)\n", response, re.DOTALL)
if reasoning_match:
reasoning_content = reasoning_match.group(1).strip()
# 简单检查推理内容是否包含关键词
if "诊断" in reasoning_content and "原因" in reasoning_content:
scores.append(1.0)
else:
scores.append(0.5)
else:
scores.append(0.0)
return scores
@staticmethod
def extract_xml_answer(text: str) -> str:
"""
从文本中提取 XML 格式的答案。
:param text: 包含 XML 格式的文本
:return: 提取的答案
"""
try:
print("text -> \n", text)
if "" in text and "" in text:
answer = text.split("")[-1]
answer = answer.split("")[0]
return answer.strip()
else:
print("Warning: tag not found in response.")
# 尝试提取其他有意义的部分
if "诊断" in text:
return text.split("诊断")[-1].strip()
elif "排查建议" in text:
return text.split("排查建议")[-1].strip()
else:
return text.strip() # 返回原始文本作为备用
except Exception as e:
print(f"Error extracting XML answer: {e}")
return "" # 返回空字符串或其他默认值
@staticmethod
def count_xml(text) -> float:
"""
计算 XML 标签的数量和完整性。
:param text: 包含 XML 格式的文本
:return: XML 标签的完整性得分
"""
count = 0.0
if text.count("\n") == 1:
count += 0.125
if text.count("\n\n") == 1:
count += 0.125
if text.count("\n\n") == 1:
count += 0.125
count -= len(text.split("\n\n")[-1]) * 0.001
if text.count("\n") == 1:
count += 0.125
count -= (len(text.split("\n")[-1]) - 1) * 0.001
return count
@staticmethod
def xmlcount_reward_func(completions, **kwargs):
"""
计算 XML 标签的完整性得分。
:param completions: 模型生成的补全内容
:return: XML 标签的完整性得分列表
"""
contents = [completion[0]["content"] for completion in completions]
return [ModelTrainer.count_xml(c) for c in contents]
@staticmethod
def soft_format_reward_func(completions, **kwargs):
"""
检查补全内容是否符合软格式要求。
:param completions: 模型生成的补全内容
:return: 符合软格式要求的得分列表
"""
pattern = r".*?\s*.*?"
responses = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, r) for r in responses]
return [0.5 if match else 0.0 for match in matches]
@staticmethod
def strict_format_reward_func(completions, **kwargs):
"""
检查响应是否符合严格的 XML 格式要求,并确保标签内容非空。
:param completions: 模型生成的补全内容
:return: 符合严格格式要求的得分列表
"""
pattern = r"^\n(.+?)\n\n\n(.+?)\n\n$"
responses = [completion[0]["content"] for completion in completions]
scores = []
for response in responses:
match = re.match(pattern, response, re.DOTALL)
if match:
reasoning_content = match.group(1).strip()
answer_content = match.group(2).strip()
# 检查内容是否非空
if reasoning_content and answer_content:
scores.append(1.0) # 格式和内容均符合要求
else:
scores.append(0.5) # 格式符合但内容为空
else:
scores.append(0.0) # 格式不符合
return scores
@staticmethod
def int_reward_func(completions, **kwargs):
"""
检查补全内容是否包含整数。
:param completions: 模型生成的补全内容
:return: 包含整数的得分列表
"""
responses = [completion[0]['content'] for completion in completions]
extracted_responses = [ModelTrainer.extract_xml_answer(r) for r in responses]
return [0.5 if r.isdigit() else 0.0 for r in extracted_responses]
@staticmethod
def correctness_reward_func(prompts, completions, answer, **kwargs):
"""
检查补全内容是否正确。
:param prompts: 输入提示
:param completions: 模型生成的补全内容
:param answer: 正确答案
:return: 补全内容正确的得分列表
"""
print("completions : \n ", completions)
responses = [completion[0]['content'] for completion in completions]
q = prompts[0][-1]['content']
extracted_responses = [ModelTrainer.extract_xml_answer(r) for r in responses]
print('-' * 20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}")
return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)]
if __name__ == "__main__":
try:
# 加载配置文件
config = load_config(f"../conf/conf_train.yaml")
print("train config:\n", config)
# 初始化 ModelTrainer
trainer = ModelTrainer(config)
# 加载模型和分词器
model, tokenizer = trainer.load_model()
# 加载数据集
train_dataset = trainer.load_data(config.train_data_path)
# 训练模型
model = trainer.train(model, tokenizer, train_dataset)
# 保存模型
trainer.save_model(model, tokenizer, config.save_path)
print("Training completed.")
except Exception as e:
print("exception \n ", e)
finally:
print("end")