UnslothPPOTrainer.py 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209
  1. from torch import Tensor
  2. import torch
  3. import torch.nn as nn
  4. from torch.nn import functional as F
  5. from trl.trainer.ppo_trainer import (Accelerator, BaseImageProcessor, CallbackHandler, DEFAULT_CALLBACKS, DEFAULT_PROGRESS_CALLBACK, DataCollatorWithPadding, DataLoader, Dataset, ExportableState, FeatureExtractionMixin, GenerationConfig, INVALID_LOGPROB, OnlineTrainerState, Optional, PPOConfig, PPOTrainer, PeftConfig, PeftModel, PolicyAndValueWrapper, PreTrainedTokenizerBase, PrinterCallback, ProcessorMixin, Trainer, TrainerCallback, TrainerControl, Union, batch_generation, broadcast, contextmanager, create_reference_model, defaultdict, disable_dropout_in_model, exact_div, first_true_indices, forward, gather_object, gc, generate_model_card, get_comet_experiment_url, get_peft_model, get_reporting_integration_callbacks, get_reward, is_peft_available, is_wandb_available, log_table_to_comet_experiment, masked_mean, masked_whiten, math, nn, np, nullcontext, os, pd, peft_module_casting_to_bf16, prepare_deepspeed, print_rich_table, textwrap, time, torch, truncate_response, unwrap_model_for_generation)
  6. import os
  7. from typing import *
  8. from dataclasses import dataclass, field
  9. from packaging.version import Version
  10. import torch
  11. import numpy as np
  12. from contextlib import nullcontext
  13. from torch.nn import functional as F
  14. torch_compile_options = {
  15. "epilogue_fusion" : True,
  16. "max_autotune" : False,
  17. "shape_padding" : True,
  18. "trace.enabled" : False,
  19. "triton.cudagraphs" : False,
  20. }
  21. @torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
  22. def selective_log_softmax(logits, index):
  23. logits = logits.to(torch.float32)
  24. selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
  25. # loop to reduce peak mem consumption
  26. # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
  27. logsumexp_values = torch.logsumexp(logits, dim = -1)
  28. per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x)
  29. return per_token_logps
  30. @dataclass
  31. class UnslothPPOConfig(PPOConfig):
  32. """
  33. Configuration class for the [`PPOTrainer`].
  34. Using [`~transformers.HfArgumentParser`] we can turn this class into
  35. [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
  36. command line.
  37. Parameters:
  38. exp_name (`str`, *optional*, defaults to `os.path.basename(__file__)[:-3]`):
  39. Name of this experiment.
  40. reward_model_path (`str`, *optional*, defaults to `"EleutherAI/pythia-160m"`):
  41. Path to the reward model.
  42. model_adapter_name (`str` or `None`, *optional*, defaults to `None`):
  43. Name of the train target PEFT adapter, when using LoRA with multiple adapters.
  44. ref_adapter_name (`str` or `None`, *optional*, defaults to `None`):
  45. Name of the reference PEFT adapter, when using LoRA with multiple adapters.
  46. num_ppo_epochs (`int`, *optional*, defaults to `4`):
  47. Number of epochs to train.
  48. whiten_rewards (`bool`, *optional*, defaults to `False`):
  49. Whether to whiten the rewards.
  50. kl_coef (`float`, *optional*, defaults to `0.05`):
  51. KL coefficient.
  52. cliprange (`float`, *optional*, defaults to `0.2`):
  53. Clip range.
  54. vf_coef (`float`, *optional*, defaults to `0.1`):
  55. Value function coefficient.
  56. cliprange_value (`float`, *optional*, defaults to `0.2`):
  57. Clip range for the value function.
  58. gamma (`float`, *optional*, defaults to `1.0`):
  59. Discount factor.
  60. lam (`float`, *optional*, defaults to `0.95`):
  61. Lambda value for GAE.
  62. ds3_gather_for_generation (`bool`, *optional*, defaults to `True`):
  63. This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation,
  64. improving generation speed. However, disabling this option allows training models that exceed the VRAM
  65. capacity of a single GPU, albeit at the cost of slower generation.
  66. """
  67. vllm_sampling_params: Optional[Any] = field(
  68. default = None,
  69. metadata = {'help': 'vLLM SamplingParams'},
  70. )
  71. unsloth_num_chunks : Optional[int] = field(
  72. default = -1,
  73. metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
  74. )
  75. def __init__(
  76. self,
  77. output_dir = None,
  78. overwrite_output_dir = None,
  79. do_train = False,
  80. do_eval = False,
  81. do_predict = False,
  82. eval_strategy = 'no',
  83. prediction_loss_only = False,
  84. per_device_train_batch_size = 4,
  85. per_device_eval_batch_size = 4,
  86. per_gpu_train_batch_size = None,
  87. per_gpu_eval_batch_size = None,
  88. gradient_accumulation_steps = 2,
  89. eval_accumulation_steps = 2,
  90. eval_delay = 0,
  91. torch_empty_cache_steps = 250,
  92. learning_rate = 5e-05,
  93. weight_decay = 0.01,
  94. adam_beta1 = 0.9,
  95. adam_beta2 = 0.999,
  96. adam_epsilon = 1e-08,
  97. max_grad_norm = 1.0,
  98. num_train_epochs = 3.0,
  99. max_steps = -1,
  100. lr_scheduler_type = 'linear',
  101. warmup_ratio = 0.1,
  102. warmup_steps = 0,
  103. log_level = 'passive',
  104. log_level_replica = 'warning',
  105. log_on_each_node = True,
  106. logging_dir = None,
  107. logging_strategy = 'steps',
  108. logging_first_step = False,
  109. logging_steps = 1,
  110. logging_nan_inf_filter = False,
  111. save_strategy = 'steps',
  112. save_steps = 500,
  113. save_total_limit = None,
  114. save_safetensors = True,
  115. save_on_each_node = False,
  116. save_only_model = False,
  117. restore_callback_states_from_checkpoint = False,
  118. no_cuda = False,
  119. use_cpu = False,
  120. use_mps_device = False,
  121. seed = 3407,
  122. data_seed = 3407,
  123. jit_mode_eval = False,
  124. use_ipex = False,
  125. bf16 = False,
  126. fp16 = False,
  127. fp16_opt_level = 'O1',
  128. half_precision_backend = 'auto',
  129. bf16_full_eval = False,
  130. fp16_full_eval = False,
  131. tf32 = None,
  132. local_rank = -1,
  133. ddp_backend = None,
  134. tpu_num_cores = None,
  135. tpu_metrics_debug = False,
  136. debug = '',
  137. dataloader_drop_last = False,
  138. eval_steps = None,
  139. dataloader_num_workers = 0,
  140. dataloader_prefetch_factor = None,
  141. past_index = -1,
  142. run_name = None,
  143. disable_tqdm = None,
  144. remove_unused_columns = True,
  145. label_names = None,
  146. load_best_model_at_end = False,
  147. metric_for_best_model = None,
  148. greater_is_better = None,
  149. ignore_data_skip = False,
  150. fsdp = '',
  151. fsdp_min_num_params = 0,
  152. fsdp_config = None,
  153. fsdp_transformer_layer_cls_to_wrap = None,
  154. accelerator_config = None,
  155. deepspeed = None,
  156. label_smoothing_factor = 0.0,
  157. optim = 'adamw_8bit',
  158. optim_args = None,
  159. adafactor = False,
  160. group_by_length = False,
  161. length_column_name = 'length',
  162. report_to = None,
  163. ddp_find_unused_parameters = None,
  164. ddp_bucket_cap_mb = None,
  165. ddp_broadcast_buffers = None,
  166. dataloader_pin_memory = True,
  167. dataloader_persistent_workers = False,
  168. skip_memory_metrics = True,
  169. use_legacy_prediction_loop = False,
  170. push_to_hub = False,
  171. resume_from_checkpoint = None,
  172. hub_model_id = None,
  173. hub_strategy = 'every_save',
  174. hub_token = None,
  175. hub_private_repo = None,
  176. hub_always_push = False,
  177. gradient_checkpointing = False,
  178. gradient_checkpointing_kwargs = None,
  179. include_inputs_for_metrics = False,
  180. eval_do_concat_batches = True,
  181. fp16_backend = 'auto',
  182. evaluation_strategy = None,
  183. push_to_hub_model_id = None,
  184. push_to_hub_organization = None,
  185. push_to_hub_token = None,
  186. mp_parameters = '',
  187. auto_find_batch_size = False,
  188. full_determinism = False,
  189. torchdynamo = None,
  190. ray_scope = 'last',
  191. ddp_timeout = 1800,
  192. torch_compile = False,
  193. torch_compile_backend = None,
  194. torch_compile_mode = None,
  195. dispatch_batches = None,
  196. split_batches = None,
  197. include_tokens_per_second = False,
  198. include_num_input_tokens_seen = False,
  199. neftune_noise_alpha = None,
  200. optim_target_modules = None,
  201. batch_eval_metrics = False,
  202. eval_on_start = False,
  203. use_liger_kernel = False,
  204. eval_use_gather_object = False,
  205. average_tokens_across_devices = False,
  206. dataset_num_proc = None,
  207. num_mini_batches = 1,
  208. total_episodes = None,
  209. local_rollout_forward_batch_size = 64,
  210. num_sample_generations = 10,
  211. response_length = 53,
  212. stop_token = None,
  213. stop_token_id = None,
  214. temperature = 0.7,
  215. missing_eos_penalty = None,
  216. sft_model_path = 'EleutherAI/pythia-160m',
  217. world_size = None,
  218. num_total_batches = None,
  219. micro_batch_size = None,
  220. local_batch_size = None,
  221. batch_size = None,
  222. local_mini_batch_size = None,
  223. mini_batch_size = None,
  224. exp_name = 'ppo_config',
  225. reward_model_path = 'EleutherAI/pythia-160m',
  226. model_adapter_name = None,
  227. ref_adapter_name = None,
  228. num_ppo_epochs = 4,
  229. whiten_rewards = False,
  230. kl_coef = 0.05,
  231. cliprange = 0.2,
  232. vf_coef = 0.1,
  233. cliprange_value = 0.2,
  234. gamma = 1.0,
  235. lam = 0.95,
  236. ds3_gather_for_generation = True,
  237. vllm_sampling_params = None,
  238. unsloth_num_chunks = -1,
  239. **kwargs,
  240. ):
  241. if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
  242. if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
  243. if output_dir is None and save_strategy == 'steps' and save_steps == 500:
  244. output_dir = 'unsloth_training_checkpoints'
  245. save_strategy = 'no'
  246. if dataset_num_proc is None:
  247. from multiprocessing import cpu_count
  248. dataset_num_proc = cpu_count()
  249. super().__init__(
  250. output_dir = output_dir,
  251. overwrite_output_dir = overwrite_output_dir,
  252. do_train = do_train,
  253. do_eval = do_eval,
  254. do_predict = do_predict,
  255. eval_strategy = eval_strategy,
  256. prediction_loss_only = prediction_loss_only,
  257. per_device_train_batch_size = per_device_train_batch_size,
  258. per_device_eval_batch_size = per_device_eval_batch_size,
  259. per_gpu_train_batch_size = per_gpu_train_batch_size,
  260. per_gpu_eval_batch_size = per_gpu_eval_batch_size,
  261. gradient_accumulation_steps = gradient_accumulation_steps,
  262. eval_accumulation_steps = eval_accumulation_steps,
  263. eval_delay = eval_delay,
  264. torch_empty_cache_steps = torch_empty_cache_steps,
  265. learning_rate = learning_rate,
  266. weight_decay = weight_decay,
  267. adam_beta1 = adam_beta1,
  268. adam_beta2 = adam_beta2,
  269. adam_epsilon = adam_epsilon,
  270. max_grad_norm = max_grad_norm,
  271. num_train_epochs = num_train_epochs,
  272. max_steps = max_steps,
  273. lr_scheduler_type = lr_scheduler_type,
  274. warmup_ratio = warmup_ratio,
  275. warmup_steps = warmup_steps,
  276. log_level = log_level,
  277. log_level_replica = log_level_replica,
  278. log_on_each_node = log_on_each_node,
  279. logging_dir = logging_dir,
  280. logging_strategy = logging_strategy,
  281. logging_first_step = logging_first_step,
  282. logging_steps = logging_steps,
  283. logging_nan_inf_filter = logging_nan_inf_filter,
  284. save_strategy = save_strategy,
  285. save_steps = save_steps,
  286. save_total_limit = save_total_limit,
  287. save_safetensors = save_safetensors,
  288. save_on_each_node = save_on_each_node,
  289. save_only_model = save_only_model,
  290. restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
  291. no_cuda = no_cuda,
  292. use_cpu = use_cpu,
  293. use_mps_device = use_mps_device,
  294. seed = seed,
  295. data_seed = data_seed,
  296. jit_mode_eval = jit_mode_eval,
  297. use_ipex = use_ipex,
  298. bf16 = bf16,
  299. fp16 = fp16,
  300. fp16_opt_level = fp16_opt_level,
  301. half_precision_backend = half_precision_backend,
  302. bf16_full_eval = bf16_full_eval,
  303. fp16_full_eval = fp16_full_eval,
  304. tf32 = tf32,
  305. local_rank = local_rank,
  306. ddp_backend = ddp_backend,
  307. tpu_num_cores = tpu_num_cores,
  308. tpu_metrics_debug = tpu_metrics_debug,
  309. debug = debug,
  310. dataloader_drop_last = dataloader_drop_last,
  311. eval_steps = eval_steps,
  312. dataloader_num_workers = dataloader_num_workers,
  313. dataloader_prefetch_factor = dataloader_prefetch_factor,
  314. past_index = past_index,
  315. run_name = run_name,
  316. disable_tqdm = disable_tqdm,
  317. remove_unused_columns = remove_unused_columns,
  318. label_names = label_names,
  319. load_best_model_at_end = load_best_model_at_end,
  320. metric_for_best_model = metric_for_best_model,
  321. greater_is_better = greater_is_better,
  322. ignore_data_skip = ignore_data_skip,
  323. fsdp = fsdp,
  324. fsdp_min_num_params = fsdp_min_num_params,
  325. fsdp_config = fsdp_config,
  326. fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
  327. accelerator_config = accelerator_config,
  328. deepspeed = deepspeed,
  329. label_smoothing_factor = label_smoothing_factor,
  330. optim = optim,
  331. optim_args = optim_args,
  332. adafactor = adafactor,
  333. group_by_length = group_by_length,
  334. length_column_name = length_column_name,
  335. report_to = report_to,
  336. ddp_find_unused_parameters = ddp_find_unused_parameters,
  337. ddp_bucket_cap_mb = ddp_bucket_cap_mb,
  338. ddp_broadcast_buffers = ddp_broadcast_buffers,
  339. dataloader_pin_memory = dataloader_pin_memory,
  340. dataloader_persistent_workers = dataloader_persistent_workers,
  341. skip_memory_metrics = skip_memory_metrics,
  342. use_legacy_prediction_loop = use_legacy_prediction_loop,
  343. push_to_hub = push_to_hub,
  344. resume_from_checkpoint = resume_from_checkpoint,
  345. hub_model_id = hub_model_id,
  346. hub_strategy = hub_strategy,
  347. hub_token = hub_token,
  348. hub_private_repo = hub_private_repo,
  349. hub_always_push = hub_always_push,
  350. gradient_checkpointing = gradient_checkpointing,
  351. gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
  352. include_inputs_for_metrics = include_inputs_for_metrics,
  353. eval_do_concat_batches = eval_do_concat_batches,
  354. fp16_backend = fp16_backend,
  355. evaluation_strategy = evaluation_strategy,
  356. push_to_hub_model_id = push_to_hub_model_id,
  357. push_to_hub_organization = push_to_hub_organization,
  358. push_to_hub_token = push_to_hub_token,
  359. mp_parameters = mp_parameters,
  360. auto_find_batch_size = auto_find_batch_size,
  361. full_determinism = full_determinism,
  362. torchdynamo = torchdynamo,
  363. ray_scope = ray_scope,
  364. ddp_timeout = ddp_timeout,
  365. torch_compile = torch_compile,
  366. torch_compile_backend = torch_compile_backend,
  367. torch_compile_mode = torch_compile_mode,
  368. dispatch_batches = dispatch_batches,
  369. split_batches = split_batches,
  370. include_tokens_per_second = include_tokens_per_second,
  371. include_num_input_tokens_seen = include_num_input_tokens_seen,
  372. neftune_noise_alpha = neftune_noise_alpha,
  373. optim_target_modules = optim_target_modules,
  374. batch_eval_metrics = batch_eval_metrics,
  375. eval_on_start = eval_on_start,
  376. use_liger_kernel = use_liger_kernel,
  377. eval_use_gather_object = eval_use_gather_object,
  378. average_tokens_across_devices = average_tokens_across_devices,
  379. dataset_num_proc = dataset_num_proc,
  380. num_mini_batches = num_mini_batches,
  381. total_episodes = total_episodes,
  382. local_rollout_forward_batch_size = local_rollout_forward_batch_size,
  383. num_sample_generations = num_sample_generations,
  384. response_length = response_length,
  385. stop_token = stop_token,
  386. stop_token_id = stop_token_id,
  387. temperature = temperature,
  388. missing_eos_penalty = missing_eos_penalty,
  389. sft_model_path = sft_model_path,
  390. world_size = world_size,
  391. num_total_batches = num_total_batches,
  392. micro_batch_size = micro_batch_size,
  393. local_batch_size = local_batch_size,
  394. batch_size = batch_size,
  395. local_mini_batch_size = local_mini_batch_size,
  396. mini_batch_size = mini_batch_size,
  397. exp_name = exp_name,
  398. reward_model_path = reward_model_path,
  399. model_adapter_name = model_adapter_name,
  400. ref_adapter_name = ref_adapter_name,
  401. num_ppo_epochs = num_ppo_epochs,
  402. whiten_rewards = whiten_rewards,
  403. kl_coef = kl_coef,
  404. cliprange = cliprange,
  405. vf_coef = vf_coef,
  406. cliprange_value = cliprange_value,
  407. gamma = gamma,
  408. lam = lam,
  409. ds3_gather_for_generation = ds3_gather_for_generation,**kwargs)
  410. self.vllm_sampling_params = vllm_sampling_params
  411. self.unsloth_num_chunks = unsloth_num_chunks
  412. pass
  413. class _UnslothPPOTrainer(Trainer):
  414. _tag_names = ["trl", "ppo"]
  415. def __init__(
  416. self,
  417. args: PPOConfig,
  418. processing_class: Optional[
  419. Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
  420. ],
  421. model: nn.Module,
  422. ref_model: Optional[nn.Module],
  423. reward_model: nn.Module,
  424. train_dataset: Dataset,
  425. value_model: Optional[nn.Module] = None,
  426. data_collator: Optional[DataCollatorWithPadding] = None,
  427. eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
  428. # less commonly used
  429. optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
  430. callbacks: Optional[list[TrainerCallback]] = None,
  431. peft_config: Optional["PeftConfig"] = None,
  432. ) -> None:
  433. if ref_model is model:
  434. raise ValueError(
  435. "`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the "
  436. "same as `model`, you must make a copy of it, or `None` if you use peft."
  437. )
  438. self.args = args
  439. self.processing_class = processing_class
  440. self.policy_model = model
  441. # Define the collator if not provided
  442. if data_collator is None:
  443. data_collator = DataCollatorWithPadding(self.processing_class)
  444. # Handle stop token settings: update policy model's generation_config to use provided stop token
  445. if args.stop_token and args.stop_token_id:
  446. raise ValueError("You cannot set both `stop_token` and `stop_token_id`.")
  447. elif args.stop_token:
  448. if args.stop_token == "eos":
  449. self.policy_model.generation_config.eos_token_id = self.stop_token_id = processing_class.eos_token_id
  450. else:
  451. raise ValueError(
  452. f"Unknown `stop_token` {args.stop_token}. Allowed values are: `'eos'` and `None` (no stop token)."
  453. )
  454. else:
  455. self.policy_model.generation_config.eos_token_id = self.stop_token_id = args.stop_token_id # None or int
  456. # peft support
  457. if not is_peft_available() and peft_config is not None:
  458. raise ImportError(
  459. "PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models"
  460. )
  461. elif is_peft_available() and peft_config is not None:
  462. # if model is a peft model and we have a peft_confg, we merge and unload it first
  463. if isinstance(self.policy_model, PeftModel):
  464. self.policy_model = self.policy_model.merge_and_unload()
  465. # get peft model with the given config
  466. self.policy_model = get_peft_model(self.policy_model, peft_config)
  467. if args.bf16 and getattr(self.policy_model, "is_loaded_in_4bit", False):
  468. peft_module_casting_to_bf16(self.policy_model)
  469. self.is_peft_model = is_peft_available() and isinstance(self.policy_model, PeftModel)
  470. self.model_adapter_name = args.model_adapter_name
  471. self.ref_adapter_name = args.ref_adapter_name
  472. if ref_model:
  473. self.ref_model = ref_model
  474. elif self.is_peft_model:
  475. self.ref_model = None
  476. else:
  477. self.ref_model = create_reference_model(self.policy_model)
  478. self.reward_model = reward_model
  479. self.train_dataset = train_dataset
  480. self.train_dataset_len = len(train_dataset)
  481. self.value_model = value_model
  482. self.data_collator = data_collator
  483. self.eval_dataset = eval_dataset
  484. self.optimizer, self.lr_scheduler = optimizers
  485. self.optimizer_cls_and_kwargs = None # needed for transformers >= 4.47
  486. #########
  487. # calculate various batch sizes
  488. #########
  489. if args.total_episodes is None: # allow the users to define episodes in terms of epochs.
  490. args.total_episodes = int(args.num_train_epochs * self.train_dataset_len)
  491. accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps)
  492. self.accelerator = accelerator
  493. args.world_size = accelerator.num_processes
  494. args.local_batch_size = (
  495. args.per_device_train_batch_size * args.gradient_accumulation_steps * args.num_mini_batches
  496. )
  497. args.micro_batch_size = int(args.per_device_train_batch_size * args.world_size)
  498. args.batch_size = int(args.local_batch_size * args.world_size)
  499. args.mini_batch_size = exact_div(
  500. args.batch_size, args.num_mini_batches, "`batch_size` must be a multiple of `num_mini_batches`"
  501. )
  502. args.local_mini_batch_size = exact_div(
  503. args.local_batch_size, args.num_mini_batches, "`local_batch_size` must be a multiple of `num_mini_batches`"
  504. )
  505. if args.whiten_rewards:
  506. assert (
  507. args.local_mini_batch_size >= 8
  508. ), f"Per-rank minibatch size {args.local_mini_batch_size} is insufficient for whitening"
  509. # `per_rank_rollout_batch_size` is our `args.local_batch_size`
  510. # `per_rank_minibatch_size` is our `args.local_mini_batch_size`
  511. args.num_total_batches = math.ceil(
  512. args.total_episodes / args.batch_size
  513. ) # we may train for more than `total_episodes`
  514. time_tensor = torch.tensor(int(time.time()), device=accelerator.device)
  515. time_int = broadcast(time_tensor, 0).item() # avoid different timestamps across processes
  516. args.run_name = f"{args.exp_name}__{args.seed}__{time_int}"
  517. self.local_seed = args.seed + accelerator.process_index * 100003 # Prime
  518. if args.num_sample_generations > 0:
  519. self.sample_generations_freq = max(1, args.num_total_batches // args.num_sample_generations)
  520. self.local_dataloader_batch_size = args.local_batch_size
  521. #########
  522. # setup model, optimizer, and others
  523. #########
  524. for module in [self.policy_model, self.ref_model, self.value_model, self.reward_model]:
  525. if module is not None:
  526. disable_dropout_in_model(module)
  527. self.model = PolicyAndValueWrapper(self.policy_model, self.value_model)
  528. self.model.config = self.policy_model.config # needed for pushing to hub
  529. self.create_optimizer_and_scheduler(
  530. num_training_steps=args.num_total_batches
  531. ) # note that we are calling `self.lr_scheduler.step()` manually only at the batch level
  532. #########
  533. ### trainer specifics
  534. #########
  535. default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
  536. self.callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
  537. self.callback_handler = CallbackHandler(
  538. self.callbacks, self.model, self.processing_class, self.optimizer, self.lr_scheduler
  539. )
  540. self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
  541. self.control = TrainerControl()
  542. self.state = OnlineTrainerState(
  543. is_local_process_zero=self.is_local_process_zero(),
  544. is_world_process_zero=self.is_world_process_zero(),
  545. stateful_callbacks=[
  546. cb for cb in self.callback_handler.callbacks + [self.control] if isinstance(cb, ExportableState)
  547. ],
  548. )
  549. self.current_flos = 0
  550. self.hp_search_backend = None
  551. self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None
  552. self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None
  553. # Create distant repo and output directory if needed
  554. self.hub_model_id = None
  555. if self.args.push_to_hub:
  556. self.init_hf_repo()
  557. if self.args.should_save:
  558. os.makedirs(self.args.output_dir, exist_ok=True)
  559. # Add tags for models that have been loaded with the correct transformers version
  560. if hasattr(self.model, "add_model_tags"):
  561. self.model.add_model_tags(self._tag_names)
  562. #########
  563. ### setup dataloader
  564. #########
  565. self.dataloader = DataLoader(
  566. self.train_dataset,
  567. batch_size=self.local_dataloader_batch_size,
  568. shuffle=True,
  569. collate_fn=self.data_collator,
  570. drop_last=True, # needed; otherwise the last batch will be of ragged shape
  571. )
  572. # sync random states for DataLoader(shuffle=True) before `accelerator.prepare`
  573. # see https://gist.github.com/vwxyzjn/2581bff1e48e185e0b85b6dfe1def79c
  574. torch.manual_seed(args.seed)
  575. self.model, self.optimizer, self.dataloader = accelerator.prepare(self.model, self.optimizer, self.dataloader)
  576. torch.manual_seed(self.local_seed) # reset the local seed again
  577. self.eval_dataloader = DataLoader(
  578. self.eval_dataset,
  579. batch_size=args.per_device_eval_batch_size,
  580. collate_fn=self.data_collator,
  581. drop_last=True,
  582. ) # no need to shuffle eval dataset
  583. self.eval_dataloader = accelerator.prepare(self.eval_dataloader)
  584. if self.is_deepspeed_enabled:
  585. self.reward_model = prepare_deepspeed(
  586. self.reward_model, args.per_device_train_batch_size, args.fp16, args.bf16
  587. )
  588. if self.ref_model is None:
  589. if not self.is_peft_model:
  590. raise ValueError("No reference model and model is not a Peft model.")
  591. else:
  592. self.ref_model = prepare_deepspeed(
  593. self.ref_model, args.per_device_train_batch_size, args.fp16, args.bf16
  594. )
  595. else:
  596. if self.ref_model is None:
  597. if not self.is_peft_model:
  598. raise ValueError("No reference model and model is not a Peft model.")
  599. else:
  600. self.ref_model = self.ref_model.to(self.accelerator.device)
  601. self.reward_model = self.reward_model.to(self.accelerator.device)
  602. def get_train_dataloader(self) -> DataLoader:
  603. return self.dataloader
  604. def get_eval_dataloader(self) -> DataLoader:
  605. return self.eval_dataloader
  606. @contextmanager
  607. def null_ref_context(self):
  608. """Context manager for handling null reference model (that is, peft adapter manipulation)."""
  609. with (
  610. self.accelerator.unwrap_model(self.model.policy).disable_adapter()
  611. if self.is_peft_model and not self.ref_adapter_name
  612. else nullcontext()
  613. ):
  614. if self.ref_adapter_name:
  615. self.model.policy.set_adapter(self.ref_adapter_name)
  616. yield
  617. if self.ref_adapter_name:
  618. self.model.policy.set_adapter(self.model_adapter_name or "default")
  619. def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
  620. backup_model = self.model
  621. self.model = self.model.policy # save only the policy
  622. if self.is_deepspeed_enabled:
  623. backup_deepspeed = self.deepspeed
  624. self.deepspeed = self.model
  625. super().save_model(output_dir, _internal_call)
  626. self.model = backup_model
  627. if self.is_deepspeed_enabled:
  628. self.deepspeed = backup_deepspeed
  629. def train(self):
  630. args = self.args
  631. accelerator = self.accelerator
  632. optimizer = self.optimizer
  633. model = self.model
  634. ref_policy = self.ref_model
  635. reward_model = self.reward_model
  636. processing_class = self.processing_class
  637. dataloader = self.dataloader
  638. device = accelerator.device
  639. def repeat_generator():
  640. while True:
  641. yield from dataloader
  642. iter_dataloader = iter(repeat_generator())
  643. generation_config = GenerationConfig(
  644. max_new_tokens=args.response_length,
  645. temperature=(args.temperature + 1e-7),
  646. top_k=0.0,
  647. top_p=1.0,
  648. do_sample=True,
  649. )
  650. accelerator.print("===training policy===")
  651. start_time = time.time()
  652. stats_shape = (args.num_ppo_epochs, args.num_mini_batches, args.gradient_accumulation_steps)
  653. approxkl_stats = torch.zeros(stats_shape, device=device)
  654. pg_clipfrac_stats = torch.zeros(stats_shape, device=device)
  655. pg_loss_stats = torch.zeros(stats_shape, device=device)
  656. vf_loss_stats = torch.zeros(stats_shape, device=device)
  657. vf_clipfrac_stats = torch.zeros(stats_shape, device=device)
  658. entropy_stats = torch.zeros(stats_shape, device=device)
  659. ratio_stats = torch.zeros(stats_shape, device=device)
  660. model.train()
  661. # trainer state initialization
  662. self.state.global_step = 0
  663. self.state.episode = 0
  664. self.state.max_steps = args.num_total_batches * args.num_mini_batches
  665. self.state.num_train_epochs = args.total_episodes / self.train_dataset_len
  666. # Compute absolute values for logging, eval, and save if given as ratio
  667. if args.logging_steps is not None:
  668. if args.logging_steps < 1:
  669. self.state.logging_steps = math.ceil(self.state.max_steps * args.logging_steps)
  670. else:
  671. self.state.logging_steps = args.logging_steps
  672. if args.eval_steps is not None:
  673. if args.eval_steps < 1:
  674. self.state.eval_steps = math.ceil(self.state.max_steps * args.eval_steps)
  675. else:
  676. self.state.eval_steps = args.eval_steps
  677. if args.save_steps is not None:
  678. if args.save_steps < 1:
  679. self.state.save_steps = math.ceil(self.state.max_steps * args.save_steps)
  680. else:
  681. self.state.save_steps = args.save_steps
  682. self.control = self.callback_handler.on_train_begin(args, self.state, self.control)
  683. # backward compatibility
  684. if self.is_deepspeed_enabled:
  685. self.deepspeed = self.model
  686. self.model_wrapped = self.model
  687. for update in range(1, args.num_total_batches + 1):
  688. self.state.episode += 1 * args.batch_size
  689. data = next(iter_dataloader)
  690. with torch.no_grad():
  691. queries = data["input_ids"].to(device)
  692. context_length = queries.shape[1]
  693. responses = []
  694. postprocessed_responses = []
  695. logprobs = []
  696. ref_logprobs = []
  697. scores = []
  698. sequence_lengths = []
  699. values = []
  700. with unwrap_model_for_generation(
  701. self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
  702. ) as unwrapped_model:
  703. query_responses, logitss = batch_generation(
  704. unwrapped_model.policy,
  705. queries,
  706. args.local_rollout_forward_batch_size,
  707. processing_class.pad_token_id,
  708. generation_config,
  709. )
  710. for i in range(0, queries.shape[0], args.local_rollout_forward_batch_size):
  711. query = queries[i : i + args.local_rollout_forward_batch_size]
  712. query_response = query_responses[i : i + args.local_rollout_forward_batch_size]
  713. response = query_response[:, context_length:]
  714. logits = logitss[i : i + args.local_rollout_forward_batch_size]
  715. logprob = selective_log_softmax(logits, response)
  716. del logits
  717. torch.cuda.empty_cache()
  718. if ref_policy is None:
  719. with self.null_ref_context():
  720. ref_output = forward(model.policy, query_response, processing_class.pad_token_id)
  721. else:
  722. ref_output = forward(ref_policy, query_response, processing_class.pad_token_id)
  723. ref_logits = ref_output.logits[:, context_length - 1 : -1]
  724. ref_logits /= args.temperature + 1e-7
  725. ref_logprob = selective_log_softmax(ref_logits, response)
  726. del ref_output, ref_logits
  727. torch.cuda.empty_cache()
  728. # Response Processing 1. truncate response after the first occurrence of `stop_token_id`
  729. postprocessed_response = response
  730. if self.stop_token_id is not None: # handle the edge case when stop_token_id exists but is 0
  731. postprocessed_response = truncate_response(
  732. self.stop_token_id, processing_class.pad_token_id, response
  733. )
  734. # Response Processing 2. run reward model on the truncated responses
  735. postprocessed_query_response = torch.cat((query, postprocessed_response), 1)
  736. sequence_length = first_true_indices(postprocessed_response == processing_class.pad_token_id) - 1
  737. unwrapped_value_model = accelerator.unwrap_model(model).value_model
  738. full_value, _, _ = get_reward(
  739. unwrapped_value_model, query_response, processing_class.pad_token_id, context_length
  740. )
  741. value = full_value[:, context_length - 1 : -1].squeeze(-1)
  742. _, score, _ = get_reward(
  743. reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length
  744. )
  745. responses.append(response)
  746. postprocessed_responses.append(postprocessed_response)
  747. logprobs.append(logprob)
  748. ref_logprobs.append(ref_logprob)
  749. sequence_lengths.append(sequence_length)
  750. scores.append(score)
  751. values.append(value)
  752. responses = torch.cat(responses, 0)
  753. postprocessed_responses = torch.cat(postprocessed_responses, 0)
  754. logprobs = torch.cat(logprobs, 0)
  755. ref_logprobs = torch.cat(ref_logprobs, 0)
  756. sequence_lengths = torch.cat(sequence_lengths, 0)
  757. scores = torch.cat(scores, 0)
  758. values = torch.cat(values, 0)
  759. del (logprob, ref_logprob, full_value, value, score, unwrapped_model)
  760. torch.cuda.empty_cache()
  761. gc.collect()
  762. # Response Processing 3. Filter completion. Ensure that the sample contains stop_token_id
  763. # Completions not passing that filter will receive a lower score.
  764. contain_eos_token = torch.any(postprocessed_responses == self.processing_class.eos_token_id, dim=-1)
  765. if self.args.missing_eos_penalty is not None:
  766. scores[~contain_eos_token] -= self.args.missing_eos_penalty
  767. # accelerator.print(f"{scores=}, {(contain_eos_token.sum() / len(contain_eos_token))=}")
  768. # be very careful with `padding_mask_p1`; see https://excalidraw.com/#json=LWnzG4w2k5DjF_EOL_xPt,e2w3a-hFJ_gX5vOfeyXGTw
  769. response_idxs = torch.arange(responses.shape[1], device=responses.device).repeat(responses.shape[0], 1)
  770. padding_mask = response_idxs > sequence_lengths.unsqueeze(1)
  771. logprobs = torch.masked_fill(logprobs, padding_mask, INVALID_LOGPROB)
  772. ref_logprobs = torch.masked_fill(ref_logprobs, padding_mask, INVALID_LOGPROB)
  773. sequence_lengths_p1 = sequence_lengths + 1
  774. padding_mask_p1 = response_idxs > (sequence_lengths_p1.unsqueeze(1))
  775. values = torch.masked_fill(values, padding_mask_p1, 0)
  776. # 4. compute rewards
  777. kl = logprobs - ref_logprobs
  778. non_score_reward = -args.kl_coef * kl
  779. rewards = non_score_reward.clone()
  780. actual_start = torch.arange(rewards.size(0), device=rewards.device)
  781. actual_end = torch.where(sequence_lengths_p1 < rewards.size(1), sequence_lengths_p1, sequence_lengths)
  782. rewards[[actual_start, actual_end]] += scores
  783. # 5. whiten rewards
  784. if args.whiten_rewards:
  785. rewards = masked_whiten(rewards, mask=~padding_mask_p1, shift_mean=False)
  786. rewards = torch.masked_fill(rewards, padding_mask_p1, 0)
  787. # 6. compute advantages and returns
  788. lastgaelam = 0
  789. advantages_reversed = []
  790. gen_length = responses.shape[1]
  791. for t in reversed(range(gen_length)):
  792. nextvalues = values[:, t + 1] if t < gen_length - 1 else 0.0
  793. delta = rewards[:, t] + args.gamma * nextvalues - values[:, t]
  794. lastgaelam = delta + args.gamma * args.lam * lastgaelam
  795. advantages_reversed.append(lastgaelam)
  796. advantages = torch.stack(advantages_reversed[::-1], axis=1)
  797. returns = advantages + values
  798. advantages = masked_whiten(advantages, ~padding_mask)
  799. advantages = torch.masked_fill(advantages, padding_mask, 0)
  800. torch.cuda.empty_cache()
  801. # Do multiple epochs of PPO training, with a fresh random shuffle in each epoch
  802. for ppo_epoch_idx in range(args.num_ppo_epochs):
  803. b_inds = np.random.permutation(args.local_batch_size)
  804. minibatch_idx = 0
  805. for mini_batch_start in range(0, args.local_batch_size, args.local_mini_batch_size):
  806. mini_batch_end = mini_batch_start + args.local_mini_batch_size
  807. mini_batch_inds = b_inds[mini_batch_start:mini_batch_end]
  808. gradient_accumulation_idx = 0
  809. for micro_batch_start in range(0, args.local_mini_batch_size, args.per_device_train_batch_size):
  810. with accelerator.accumulate(model):
  811. micro_batch_end = micro_batch_start + args.per_device_train_batch_size
  812. micro_batch_inds = mini_batch_inds[micro_batch_start:micro_batch_end]
  813. mb_advantage = advantages[micro_batch_inds]
  814. mb_responses = responses[micro_batch_inds]
  815. mb_query_responses = query_responses[micro_batch_inds]
  816. mb_logprobs = logprobs[micro_batch_inds]
  817. mb_return = returns[micro_batch_inds]
  818. mb_values = values[micro_batch_inds]
  819. output, vpred_temp = forward(model, mb_query_responses, processing_class.pad_token_id)
  820. logits = output.logits[:, context_length - 1 : -1]
  821. logits /= args.temperature + 1e-7
  822. new_logprobs = selective_log_softmax(logits, mb_responses)
  823. new_logprobs = torch.masked_fill(
  824. new_logprobs, padding_mask[micro_batch_inds], INVALID_LOGPROB
  825. )
  826. vpred = vpred_temp[:, context_length - 1 : -1].squeeze(-1)
  827. vpred = torch.masked_fill(vpred, padding_mask_p1[micro_batch_inds], 0)
  828. vpredclipped = torch.clamp(
  829. vpred,
  830. mb_values - args.cliprange_value,
  831. mb_values + args.cliprange_value,
  832. )
  833. vf_losses1 = torch.square(vpred - mb_return)
  834. vf_losses2 = torch.square(vpredclipped - mb_return)
  835. vf_loss_max = torch.max(vf_losses1, vf_losses2)
  836. vf_loss = 0.5 * masked_mean(vf_loss_max, ~padding_mask_p1[micro_batch_inds])
  837. vf_clipfrac = masked_mean(
  838. (vf_losses2 > vf_losses1).float(), ~padding_mask_p1[micro_batch_inds]
  839. )
  840. logprobs_diff = new_logprobs - mb_logprobs
  841. ratio = torch.exp(logprobs_diff)
  842. pg_losses = -mb_advantage * ratio
  843. pg_losses2 = -mb_advantage * torch.clamp(ratio, 1.0 - args.cliprange, 1.0 + args.cliprange)
  844. pg_loss_max = torch.max(pg_losses, pg_losses2)
  845. pg_loss = masked_mean(pg_loss_max, ~padding_mask[micro_batch_inds])
  846. loss = pg_loss + args.vf_coef * vf_loss
  847. accelerator.backward(loss)
  848. optimizer.step()
  849. optimizer.zero_grad()
  850. with torch.no_grad():
  851. pg_clipfrac = masked_mean(
  852. (pg_losses2 > pg_losses).float(), ~padding_mask[micro_batch_inds]
  853. )
  854. prob_dist = torch.nn.functional.softmax(logits, dim=-1)
  855. entropy = torch.logsumexp(logits, dim=-1) - torch.sum(prob_dist * logits, dim=-1)
  856. approxkl = 0.5 * (logprobs_diff**2).mean()
  857. approxkl_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = approxkl
  858. pg_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = (
  859. pg_clipfrac
  860. )
  861. pg_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = pg_loss
  862. vf_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = vf_loss
  863. vf_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = (
  864. vf_clipfrac
  865. )
  866. entropy_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = entropy.mean()
  867. ratio_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = ratio.mean()
  868. gradient_accumulation_idx += 1
  869. minibatch_idx += 1
  870. # del everything and empty cache
  871. # fmt: off
  872. del (
  873. output, vpred_temp, logits, new_logprobs, vpred, vpredclipped,
  874. vf_losses1, vf_losses2, vf_loss, vf_clipfrac, logprobs_diff, ratio, pg_losses, pg_losses2, pg_loss_max,
  875. pg_loss, loss, pg_clipfrac, prob_dist, entropy, approxkl, mb_return,
  876. mb_advantage, mb_values, mb_responses, mb_query_responses, mb_logprobs,
  877. )
  878. # fmt: on
  879. torch.cuda.empty_cache()
  880. with torch.no_grad():
  881. mean_kl = kl.sum(1).mean()
  882. mean_entropy = (-logprobs).sum(1).mean()
  883. mean_non_score_reward = non_score_reward.sum(1).mean()
  884. rlhf_reward = mean_non_score_reward + scores.mean()
  885. eps = int(self.state.episode / (time.time() - start_time))
  886. metrics = {}
  887. metrics["eps"] = eps
  888. metrics["objective/kl"] = self.accelerator.gather_for_metrics(mean_kl).mean().item()
  889. metrics["objective/entropy"] = self.accelerator.gather_for_metrics(mean_entropy).mean().item()
  890. metrics["objective/non_score_reward"] = (
  891. self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item()
  892. )
  893. metrics["objective/rlhf_reward"] = self.accelerator.gather_for_metrics(rlhf_reward).mean().item()
  894. metrics["objective/scores"] = self.accelerator.gather_for_metrics(scores.mean()).mean().item()
  895. metrics["policy/approxkl_avg"] = self.accelerator.gather_for_metrics(approxkl_stats).mean().item()
  896. metrics["policy/clipfrac_avg"] = self.accelerator.gather_for_metrics(pg_clipfrac_stats).mean().item()
  897. metrics["loss/policy_avg"] = self.accelerator.gather_for_metrics(pg_loss_stats).mean().item()
  898. metrics["loss/value_avg"] = self.accelerator.gather_for_metrics(vf_loss_stats).mean().item()
  899. metrics["val/clipfrac_avg"] = self.accelerator.gather_for_metrics(vf_clipfrac_stats).mean().item()
  900. metrics["policy/entropy_avg"] = self.accelerator.gather_for_metrics(entropy_stats).mean().item()
  901. metrics["val/ratio"] = self.accelerator.gather_for_metrics(ratio_stats).mean().item()
  902. metrics["val/ratio_var"] = self.accelerator.gather_for_metrics(ratio_stats).var().item()
  903. metrics["val/num_eos_tokens"] = (responses == processing_class.eos_token_id).sum().item()
  904. metrics["lr"] = self.lr_scheduler.get_last_lr()[0]
  905. metrics["episode"] = self.state.episode
  906. self.state.epoch = self.state.episode / self.train_dataset_len # used by self.log
  907. self.state.global_step += 1
  908. self.log(metrics)
  909. self.lr_scheduler.step()
  910. self.control = self.callback_handler.on_step_end(args, self.state, self.control)
  911. if self.control.should_save:
  912. self._save_checkpoint(model, trial=None)
  913. self.control = self.callback_handler.on_save(self.args, self.state, self.control)
  914. del kl, mean_kl, mean_entropy, mean_non_score_reward, scores, metrics, non_score_reward
  915. torch.cuda.empty_cache()
  916. gc.collect()
  917. if args.num_sample_generations > 0 and (update - 1) % self.sample_generations_freq == 0:
  918. self.generate_completions(sampling=True)
  919. torch.cuda.empty_cache()
  920. del (
  921. query_responses,
  922. responses,
  923. postprocessed_responses,
  924. logprobs,
  925. ref_logprobs,
  926. values,
  927. sequence_lengths,
  928. contain_eos_token,
  929. sequence_lengths_p1,
  930. response_idxs,
  931. padding_mask,
  932. padding_mask_p1,
  933. rewards,
  934. actual_start,
  935. actual_end,
  936. advantages,
  937. returns,
  938. )
  939. torch.cuda.empty_cache()
  940. # HF trainer specifics
  941. self.control = self.callback_handler.on_train_end(args, self.state, self.control)
  942. if self.control.should_save:
  943. self._save_checkpoint(model, trial=None, metrics=None)
  944. self.control = self.callback_handler.on_save(self.args, self.state, self.control)
  945. def generate_completions(self, sampling: bool = False):
  946. args = self.args
  947. processing_class = self.processing_class
  948. generation_config = GenerationConfig(
  949. max_new_tokens=self.args.response_length,
  950. temperature=(0.01 + 1e-7),
  951. top_k=0.0,
  952. top_p=1.0,
  953. do_sample=True,
  954. )
  955. table = defaultdict(list)
  956. with unwrap_model_for_generation(
  957. self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
  958. ) as unwrapped_model:
  959. for batch in self.eval_dataloader:
  960. query = batch["input_ids"]
  961. with torch.no_grad():
  962. context_length = query.shape[1]
  963. query_response, _ = batch_generation(
  964. unwrapped_model.policy,
  965. query,
  966. query.shape[0],
  967. processing_class.pad_token_id,
  968. generation_config,
  969. )
  970. response = query_response[:, context_length:]
  971. postprocessed_response = response
  972. if self.stop_token_id is not None: # handle the edge case when stop_token_id exists but is 0
  973. postprocessed_response = truncate_response(
  974. self.stop_token_id, processing_class.pad_token_id, response
  975. )
  976. table["query"].extend(
  977. gather_object(processing_class.batch_decode(query, skip_special_tokens=True))
  978. )
  979. table["model response"].extend(
  980. gather_object(processing_class.batch_decode(postprocessed_response))
  981. )
  982. postprocessed_query_response = torch.cat((query, postprocessed_response), 1)
  983. _, score, _ = get_reward(
  984. self.reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length
  985. )
  986. table["score"].extend(self.accelerator.gather_for_metrics(score).float().cpu().numpy())
  987. if sampling:
  988. break
  989. df = pd.DataFrame(table)
  990. if self.accelerator.is_main_process:
  991. print_rich_table(df.iloc[0 : 0 + 5])
  992. if "wandb" in args.report_to:
  993. import wandb
  994. if wandb.run is not None:
  995. wandb.log({"completions": wandb.Table(dataframe=df)})
  996. if "comet_ml" in args.report_to:
  997. log_table_to_comet_experiment(
  998. name="completions.csv",
  999. table=df,
  1000. )
  1001. def create_model_card(
  1002. self,
  1003. model_name: Optional[str] = None,
  1004. dataset_name: Optional[str] = None,
  1005. tags: Union[str, list[str], None] = None,
  1006. ):
  1007. """
  1008. Creates a draft of a model card using the information available to the `Trainer`.
  1009. Args:
  1010. model_name (`str` or `None`, *optional*, defaults to `None`):
  1011. Name of the model.
  1012. dataset_name (`str` or `None`, *optional*, defaults to `None`):
  1013. Name of the dataset used for training.
  1014. tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
  1015. Tags to be associated with the model card.
  1016. """
  1017. if not self.is_world_process_zero():
  1018. return
  1019. if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
  1020. base_model = self.model.config._name_or_path
  1021. else:
  1022. base_model = None
  1023. tags = tags or []
  1024. if isinstance(tags, str):
  1025. tags = [tags]
  1026. if hasattr(self.model.config, "unsloth_version"):
  1027. tags.append("unsloth")
  1028. citation = textwrap.dedent("""\
  1029. @article{mziegler2019fine-tuning,
  1030. title = {{Fine-Tuning Language Models from Human Preferences}},
  1031. author = {Daniel M. Ziegler and Nisan Stiennon and Jeffrey Wu and Tom B. Brown and Alec Radford and Dario Amodei and Paul F. Christiano and Geoffrey Irving},
  1032. year = 2019,
  1033. eprint = {arXiv:1909.08593}
  1034. }""")
  1035. model_card = generate_model_card(
  1036. base_model=base_model,
  1037. model_name=model_name,
  1038. hub_model_id=self.hub_model_id,
  1039. dataset_name=dataset_name,
  1040. tags=tags,
  1041. wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
  1042. comet_url=get_comet_experiment_url(),
  1043. trainer_name="PPO",
  1044. trainer_citation=citation,
  1045. paper_title="Fine-Tuning Language Models from Human Preferences",
  1046. paper_id="1909.08593",
  1047. )
  1048. model_card.save(os.path.join(self.args.output_dir, "README.md"))
  1049. class UnslothPPOTrainer(_UnslothPPOTrainer):
  1050. """
  1051. """
  1052. def __init__(
  1053. self,
  1054. args,
  1055. processing_class,
  1056. model,
  1057. ref_model,
  1058. reward_model,
  1059. train_dataset,
  1060. value_model = None,
  1061. data_collator = None,
  1062. eval_dataset = None,
  1063. callbacks = None,
  1064. peft_config = None,
  1065. **kwargs
  1066. ):
  1067. if args is None: args = UnslothPPOConfig()
  1068. use_bf16 = getattr(args, 'bf16', False)
  1069. use_fp16 = getattr(args, 'fp16', False)
  1070. dtype = getattr(model.config, 'torch_dtype', None)
  1071. if dtype is None: dtype = model.get_input_embeddings().dtype
  1072. from unsloth_zoo.utils import _get_dtype
  1073. dtype = _get_dtype(dtype)
  1074. float16 = dtype == torch.float16
  1075. if float16 and use_bf16: raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
  1076. if not float16 and use_fp16: raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
  1077. if not use_bf16 and not use_fp16:
  1078. args.fp16 = float16
  1079. args.bf16 = not float16
  1080. os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
  1081. if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
  1082. args.eval_strategy = 'steps'
  1083. if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
  1084. ga_steps = getattr(args, 'gradient_accumulation_steps', None)
  1085. if ga_steps is not None and ga_steps > 1:
  1086. from transformers import __version__ as transformers_version
  1087. if Version(transformers_version) <= Version('4.45.2'):
  1088. print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
  1089. '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
  1090. if getattr(args, 'eval_strategy', 'no') != 'no':
  1091. eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
  1092. if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
  1093. if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
  1094. fp16_full_eval = getattr(args, 'fp16_full_eval', False)
  1095. bf16_full_eval = getattr(args, 'bf16_full_eval', False)
  1096. if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
  1097. if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
  1098. if not bf16_full_eval and not fp16_full_eval: args.bf16_full_eval = args.bf16; args.fp16_full_eval = args.fp16
  1099. if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
  1100. pass
  1101. else:
  1102. model_max_seq_length = getattr(model, 'max_seq_length', None)
  1103. args_max_seq_length = getattr(args, 'max_seq_length', None)
  1104. if args_max_seq_length is None and model_max_seq_length is not None:
  1105. max_seq_length = model.max_seq_length
  1106. if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
  1107. if model is not None and hasattr(model, 'for_training'):
  1108. model.for_training()
  1109. if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
  1110. if 'processing_class' in locals():
  1111. if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
  1112. if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
  1113. other_metrics = []
  1114. from unsloth_zoo.logging_utils import PatchRLStatistics
  1115. PatchRLStatistics('ppo_trainer', other_metrics)
  1116. super().__init__(
  1117. args = args,
  1118. processing_class = processing_class,
  1119. model = model,
  1120. ref_model = ref_model,
  1121. reward_model = reward_model,
  1122. train_dataset = train_dataset,
  1123. value_model = value_model,
  1124. data_collator = data_collator,
  1125. eval_dataset = eval_dataset,
  1126. callbacks = callbacks,
  1127. peft_config = peft_config,**kwargs)
  1128. if hasattr(self, 'neftune_hook_handle'):
  1129. self.neftune_hook_handle.remove()
  1130. if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
  1131. if getattr(args, 'neftune_noise_alpha', None) is not None:
  1132. model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
  1133. pass
  1134. pass