123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209 |
- from torch import Tensor
- import torch
- import torch.nn as nn
- from torch.nn import functional as F
- from trl.trainer.ppo_trainer import (Accelerator, BaseImageProcessor, CallbackHandler, DEFAULT_CALLBACKS, DEFAULT_PROGRESS_CALLBACK, DataCollatorWithPadding, DataLoader, Dataset, ExportableState, FeatureExtractionMixin, GenerationConfig, INVALID_LOGPROB, OnlineTrainerState, Optional, PPOConfig, PPOTrainer, PeftConfig, PeftModel, PolicyAndValueWrapper, PreTrainedTokenizerBase, PrinterCallback, ProcessorMixin, Trainer, TrainerCallback, TrainerControl, Union, batch_generation, broadcast, contextmanager, create_reference_model, defaultdict, disable_dropout_in_model, exact_div, first_true_indices, forward, gather_object, gc, generate_model_card, get_comet_experiment_url, get_peft_model, get_reporting_integration_callbacks, get_reward, is_peft_available, is_wandb_available, log_table_to_comet_experiment, masked_mean, masked_whiten, math, nn, np, nullcontext, os, pd, peft_module_casting_to_bf16, prepare_deepspeed, print_rich_table, textwrap, time, torch, truncate_response, unwrap_model_for_generation)
- import os
- from typing import *
- from dataclasses import dataclass, field
- from packaging.version import Version
- import torch
- import numpy as np
- from contextlib import nullcontext
- from torch.nn import functional as F
- torch_compile_options = {
- "epilogue_fusion" : True,
- "max_autotune" : False,
- "shape_padding" : True,
- "trace.enabled" : False,
- "triton.cudagraphs" : False,
- }
- @torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
- def selective_log_softmax(logits, index):
- logits = logits.to(torch.float32)
- selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
- # loop to reduce peak mem consumption
- # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
- logsumexp_values = torch.logsumexp(logits, dim = -1)
- per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x)
- return per_token_logps
- @dataclass
- class UnslothPPOConfig(PPOConfig):
- """
-
- Configuration class for the [`PPOTrainer`].
- Using [`~transformers.HfArgumentParser`] we can turn this class into
- [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
- command line.
- Parameters:
- exp_name (`str`, *optional*, defaults to `os.path.basename(__file__)[:-3]`):
- Name of this experiment.
- reward_model_path (`str`, *optional*, defaults to `"EleutherAI/pythia-160m"`):
- Path to the reward model.
- model_adapter_name (`str` or `None`, *optional*, defaults to `None`):
- Name of the train target PEFT adapter, when using LoRA with multiple adapters.
- ref_adapter_name (`str` or `None`, *optional*, defaults to `None`):
- Name of the reference PEFT adapter, when using LoRA with multiple adapters.
- num_ppo_epochs (`int`, *optional*, defaults to `4`):
- Number of epochs to train.
- whiten_rewards (`bool`, *optional*, defaults to `False`):
- Whether to whiten the rewards.
- kl_coef (`float`, *optional*, defaults to `0.05`):
- KL coefficient.
- cliprange (`float`, *optional*, defaults to `0.2`):
- Clip range.
- vf_coef (`float`, *optional*, defaults to `0.1`):
- Value function coefficient.
- cliprange_value (`float`, *optional*, defaults to `0.2`):
- Clip range for the value function.
- gamma (`float`, *optional*, defaults to `1.0`):
- Discount factor.
- lam (`float`, *optional*, defaults to `0.95`):
- Lambda value for GAE.
- ds3_gather_for_generation (`bool`, *optional*, defaults to `True`):
- This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation,
- improving generation speed. However, disabling this option allows training models that exceed the VRAM
- capacity of a single GPU, albeit at the cost of slower generation.
-
- """
- vllm_sampling_params: Optional[Any] = field(
- default = None,
- metadata = {'help': 'vLLM SamplingParams'},
- )
- unsloth_num_chunks : Optional[int] = field(
- default = -1,
- metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
- )
- def __init__(
- self,
- output_dir = None,
- overwrite_output_dir = None,
- do_train = False,
- do_eval = False,
- do_predict = False,
- eval_strategy = 'no',
- prediction_loss_only = False,
- per_device_train_batch_size = 4,
- per_device_eval_batch_size = 4,
- per_gpu_train_batch_size = None,
- per_gpu_eval_batch_size = None,
- gradient_accumulation_steps = 2,
- eval_accumulation_steps = 2,
- eval_delay = 0,
- torch_empty_cache_steps = 250,
- learning_rate = 5e-05,
- weight_decay = 0.01,
- adam_beta1 = 0.9,
- adam_beta2 = 0.999,
- adam_epsilon = 1e-08,
- max_grad_norm = 1.0,
- num_train_epochs = 3.0,
- max_steps = -1,
- lr_scheduler_type = 'linear',
- warmup_ratio = 0.1,
- warmup_steps = 0,
- log_level = 'passive',
- log_level_replica = 'warning',
- log_on_each_node = True,
- logging_dir = None,
- logging_strategy = 'steps',
- logging_first_step = False,
- logging_steps = 1,
- logging_nan_inf_filter = False,
- save_strategy = 'steps',
- save_steps = 500,
- save_total_limit = None,
- save_safetensors = True,
- save_on_each_node = False,
- save_only_model = False,
- restore_callback_states_from_checkpoint = False,
- no_cuda = False,
- use_cpu = False,
- use_mps_device = False,
- seed = 3407,
- data_seed = 3407,
- jit_mode_eval = False,
- use_ipex = False,
- bf16 = False,
- fp16 = False,
- fp16_opt_level = 'O1',
- half_precision_backend = 'auto',
- bf16_full_eval = False,
- fp16_full_eval = False,
- tf32 = None,
- local_rank = -1,
- ddp_backend = None,
- tpu_num_cores = None,
- tpu_metrics_debug = False,
- debug = '',
- dataloader_drop_last = False,
- eval_steps = None,
- dataloader_num_workers = 0,
- dataloader_prefetch_factor = None,
- past_index = -1,
- run_name = None,
- disable_tqdm = None,
- remove_unused_columns = True,
- label_names = None,
- load_best_model_at_end = False,
- metric_for_best_model = None,
- greater_is_better = None,
- ignore_data_skip = False,
- fsdp = '',
- fsdp_min_num_params = 0,
- fsdp_config = None,
- fsdp_transformer_layer_cls_to_wrap = None,
- accelerator_config = None,
- deepspeed = None,
- label_smoothing_factor = 0.0,
- optim = 'adamw_8bit',
- optim_args = None,
- adafactor = False,
- group_by_length = False,
- length_column_name = 'length',
- report_to = None,
- ddp_find_unused_parameters = None,
- ddp_bucket_cap_mb = None,
- ddp_broadcast_buffers = None,
- dataloader_pin_memory = True,
- dataloader_persistent_workers = False,
- skip_memory_metrics = True,
- use_legacy_prediction_loop = False,
- push_to_hub = False,
- resume_from_checkpoint = None,
- hub_model_id = None,
- hub_strategy = 'every_save',
- hub_token = None,
- hub_private_repo = None,
- hub_always_push = False,
- gradient_checkpointing = False,
- gradient_checkpointing_kwargs = None,
- include_inputs_for_metrics = False,
- eval_do_concat_batches = True,
- fp16_backend = 'auto',
- evaluation_strategy = None,
- push_to_hub_model_id = None,
- push_to_hub_organization = None,
- push_to_hub_token = None,
- mp_parameters = '',
- auto_find_batch_size = False,
- full_determinism = False,
- torchdynamo = None,
- ray_scope = 'last',
- ddp_timeout = 1800,
- torch_compile = False,
- torch_compile_backend = None,
- torch_compile_mode = None,
- dispatch_batches = None,
- split_batches = None,
- include_tokens_per_second = False,
- include_num_input_tokens_seen = False,
- neftune_noise_alpha = None,
- optim_target_modules = None,
- batch_eval_metrics = False,
- eval_on_start = False,
- use_liger_kernel = False,
- eval_use_gather_object = False,
- average_tokens_across_devices = False,
- dataset_num_proc = None,
- num_mini_batches = 1,
- total_episodes = None,
- local_rollout_forward_batch_size = 64,
- num_sample_generations = 10,
- response_length = 53,
- stop_token = None,
- stop_token_id = None,
- temperature = 0.7,
- missing_eos_penalty = None,
- sft_model_path = 'EleutherAI/pythia-160m',
- world_size = None,
- num_total_batches = None,
- micro_batch_size = None,
- local_batch_size = None,
- batch_size = None,
- local_mini_batch_size = None,
- mini_batch_size = None,
- exp_name = 'ppo_config',
- reward_model_path = 'EleutherAI/pythia-160m',
- model_adapter_name = None,
- ref_adapter_name = None,
- num_ppo_epochs = 4,
- whiten_rewards = False,
- kl_coef = 0.05,
- cliprange = 0.2,
- vf_coef = 0.1,
- cliprange_value = 0.2,
- gamma = 1.0,
- lam = 0.95,
- ds3_gather_for_generation = True,
- vllm_sampling_params = None,
- unsloth_num_chunks = -1,
- **kwargs,
- ):
- if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
- if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
- if output_dir is None and save_strategy == 'steps' and save_steps == 500:
- output_dir = 'unsloth_training_checkpoints'
- save_strategy = 'no'
- if dataset_num_proc is None:
- from multiprocessing import cpu_count
- dataset_num_proc = cpu_count()
-
- super().__init__(
- output_dir = output_dir,
- overwrite_output_dir = overwrite_output_dir,
- do_train = do_train,
- do_eval = do_eval,
- do_predict = do_predict,
- eval_strategy = eval_strategy,
- prediction_loss_only = prediction_loss_only,
- per_device_train_batch_size = per_device_train_batch_size,
- per_device_eval_batch_size = per_device_eval_batch_size,
- per_gpu_train_batch_size = per_gpu_train_batch_size,
- per_gpu_eval_batch_size = per_gpu_eval_batch_size,
- gradient_accumulation_steps = gradient_accumulation_steps,
- eval_accumulation_steps = eval_accumulation_steps,
- eval_delay = eval_delay,
- torch_empty_cache_steps = torch_empty_cache_steps,
- learning_rate = learning_rate,
- weight_decay = weight_decay,
- adam_beta1 = adam_beta1,
- adam_beta2 = adam_beta2,
- adam_epsilon = adam_epsilon,
- max_grad_norm = max_grad_norm,
- num_train_epochs = num_train_epochs,
- max_steps = max_steps,
- lr_scheduler_type = lr_scheduler_type,
- warmup_ratio = warmup_ratio,
- warmup_steps = warmup_steps,
- log_level = log_level,
- log_level_replica = log_level_replica,
- log_on_each_node = log_on_each_node,
- logging_dir = logging_dir,
- logging_strategy = logging_strategy,
- logging_first_step = logging_first_step,
- logging_steps = logging_steps,
- logging_nan_inf_filter = logging_nan_inf_filter,
- save_strategy = save_strategy,
- save_steps = save_steps,
- save_total_limit = save_total_limit,
- save_safetensors = save_safetensors,
- save_on_each_node = save_on_each_node,
- save_only_model = save_only_model,
- restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
- no_cuda = no_cuda,
- use_cpu = use_cpu,
- use_mps_device = use_mps_device,
- seed = seed,
- data_seed = data_seed,
- jit_mode_eval = jit_mode_eval,
- use_ipex = use_ipex,
- bf16 = bf16,
- fp16 = fp16,
- fp16_opt_level = fp16_opt_level,
- half_precision_backend = half_precision_backend,
- bf16_full_eval = bf16_full_eval,
- fp16_full_eval = fp16_full_eval,
- tf32 = tf32,
- local_rank = local_rank,
- ddp_backend = ddp_backend,
- tpu_num_cores = tpu_num_cores,
- tpu_metrics_debug = tpu_metrics_debug,
- debug = debug,
- dataloader_drop_last = dataloader_drop_last,
- eval_steps = eval_steps,
- dataloader_num_workers = dataloader_num_workers,
- dataloader_prefetch_factor = dataloader_prefetch_factor,
- past_index = past_index,
- run_name = run_name,
- disable_tqdm = disable_tqdm,
- remove_unused_columns = remove_unused_columns,
- label_names = label_names,
- load_best_model_at_end = load_best_model_at_end,
- metric_for_best_model = metric_for_best_model,
- greater_is_better = greater_is_better,
- ignore_data_skip = ignore_data_skip,
- fsdp = fsdp,
- fsdp_min_num_params = fsdp_min_num_params,
- fsdp_config = fsdp_config,
- fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
- accelerator_config = accelerator_config,
- deepspeed = deepspeed,
- label_smoothing_factor = label_smoothing_factor,
- optim = optim,
- optim_args = optim_args,
- adafactor = adafactor,
- group_by_length = group_by_length,
- length_column_name = length_column_name,
- report_to = report_to,
- ddp_find_unused_parameters = ddp_find_unused_parameters,
- ddp_bucket_cap_mb = ddp_bucket_cap_mb,
- ddp_broadcast_buffers = ddp_broadcast_buffers,
- dataloader_pin_memory = dataloader_pin_memory,
- dataloader_persistent_workers = dataloader_persistent_workers,
- skip_memory_metrics = skip_memory_metrics,
- use_legacy_prediction_loop = use_legacy_prediction_loop,
- push_to_hub = push_to_hub,
- resume_from_checkpoint = resume_from_checkpoint,
- hub_model_id = hub_model_id,
- hub_strategy = hub_strategy,
- hub_token = hub_token,
- hub_private_repo = hub_private_repo,
- hub_always_push = hub_always_push,
- gradient_checkpointing = gradient_checkpointing,
- gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
- include_inputs_for_metrics = include_inputs_for_metrics,
- eval_do_concat_batches = eval_do_concat_batches,
- fp16_backend = fp16_backend,
- evaluation_strategy = evaluation_strategy,
- push_to_hub_model_id = push_to_hub_model_id,
- push_to_hub_organization = push_to_hub_organization,
- push_to_hub_token = push_to_hub_token,
- mp_parameters = mp_parameters,
- auto_find_batch_size = auto_find_batch_size,
- full_determinism = full_determinism,
- torchdynamo = torchdynamo,
- ray_scope = ray_scope,
- ddp_timeout = ddp_timeout,
- torch_compile = torch_compile,
- torch_compile_backend = torch_compile_backend,
- torch_compile_mode = torch_compile_mode,
- dispatch_batches = dispatch_batches,
- split_batches = split_batches,
- include_tokens_per_second = include_tokens_per_second,
- include_num_input_tokens_seen = include_num_input_tokens_seen,
- neftune_noise_alpha = neftune_noise_alpha,
- optim_target_modules = optim_target_modules,
- batch_eval_metrics = batch_eval_metrics,
- eval_on_start = eval_on_start,
- use_liger_kernel = use_liger_kernel,
- eval_use_gather_object = eval_use_gather_object,
- average_tokens_across_devices = average_tokens_across_devices,
- dataset_num_proc = dataset_num_proc,
- num_mini_batches = num_mini_batches,
- total_episodes = total_episodes,
- local_rollout_forward_batch_size = local_rollout_forward_batch_size,
- num_sample_generations = num_sample_generations,
- response_length = response_length,
- stop_token = stop_token,
- stop_token_id = stop_token_id,
- temperature = temperature,
- missing_eos_penalty = missing_eos_penalty,
- sft_model_path = sft_model_path,
- world_size = world_size,
- num_total_batches = num_total_batches,
- micro_batch_size = micro_batch_size,
- local_batch_size = local_batch_size,
- batch_size = batch_size,
- local_mini_batch_size = local_mini_batch_size,
- mini_batch_size = mini_batch_size,
- exp_name = exp_name,
- reward_model_path = reward_model_path,
- model_adapter_name = model_adapter_name,
- ref_adapter_name = ref_adapter_name,
- num_ppo_epochs = num_ppo_epochs,
- whiten_rewards = whiten_rewards,
- kl_coef = kl_coef,
- cliprange = cliprange,
- vf_coef = vf_coef,
- cliprange_value = cliprange_value,
- gamma = gamma,
- lam = lam,
- ds3_gather_for_generation = ds3_gather_for_generation,**kwargs)
- self.vllm_sampling_params = vllm_sampling_params
- self.unsloth_num_chunks = unsloth_num_chunks
- pass
- class _UnslothPPOTrainer(Trainer):
- _tag_names = ["trl", "ppo"]
- def __init__(
- self,
- args: PPOConfig,
- processing_class: Optional[
- Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
- ],
- model: nn.Module,
- ref_model: Optional[nn.Module],
- reward_model: nn.Module,
- train_dataset: Dataset,
- value_model: Optional[nn.Module] = None,
- data_collator: Optional[DataCollatorWithPadding] = None,
- eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
- # less commonly used
- optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
- callbacks: Optional[list[TrainerCallback]] = None,
- peft_config: Optional["PeftConfig"] = None,
- ) -> None:
- if ref_model is model:
- raise ValueError(
- "`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the "
- "same as `model`, you must make a copy of it, or `None` if you use peft."
- )
- self.args = args
- self.processing_class = processing_class
- self.policy_model = model
- # Define the collator if not provided
- if data_collator is None:
- data_collator = DataCollatorWithPadding(self.processing_class)
- # Handle stop token settings: update policy model's generation_config to use provided stop token
- if args.stop_token and args.stop_token_id:
- raise ValueError("You cannot set both `stop_token` and `stop_token_id`.")
- elif args.stop_token:
- if args.stop_token == "eos":
- self.policy_model.generation_config.eos_token_id = self.stop_token_id = processing_class.eos_token_id
- else:
- raise ValueError(
- f"Unknown `stop_token` {args.stop_token}. Allowed values are: `'eos'` and `None` (no stop token)."
- )
- else:
- self.policy_model.generation_config.eos_token_id = self.stop_token_id = args.stop_token_id # None or int
- # peft support
- if not is_peft_available() and peft_config is not None:
- raise ImportError(
- "PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models"
- )
- elif is_peft_available() and peft_config is not None:
- # if model is a peft model and we have a peft_confg, we merge and unload it first
- if isinstance(self.policy_model, PeftModel):
- self.policy_model = self.policy_model.merge_and_unload()
- # get peft model with the given config
- self.policy_model = get_peft_model(self.policy_model, peft_config)
- if args.bf16 and getattr(self.policy_model, "is_loaded_in_4bit", False):
- peft_module_casting_to_bf16(self.policy_model)
- self.is_peft_model = is_peft_available() and isinstance(self.policy_model, PeftModel)
- self.model_adapter_name = args.model_adapter_name
- self.ref_adapter_name = args.ref_adapter_name
- if ref_model:
- self.ref_model = ref_model
- elif self.is_peft_model:
- self.ref_model = None
- else:
- self.ref_model = create_reference_model(self.policy_model)
- self.reward_model = reward_model
- self.train_dataset = train_dataset
- self.train_dataset_len = len(train_dataset)
- self.value_model = value_model
- self.data_collator = data_collator
- self.eval_dataset = eval_dataset
- self.optimizer, self.lr_scheduler = optimizers
- self.optimizer_cls_and_kwargs = None # needed for transformers >= 4.47
- #########
- # calculate various batch sizes
- #########
- if args.total_episodes is None: # allow the users to define episodes in terms of epochs.
- args.total_episodes = int(args.num_train_epochs * self.train_dataset_len)
- accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps)
- self.accelerator = accelerator
- args.world_size = accelerator.num_processes
- args.local_batch_size = (
- args.per_device_train_batch_size * args.gradient_accumulation_steps * args.num_mini_batches
- )
- args.micro_batch_size = int(args.per_device_train_batch_size * args.world_size)
- args.batch_size = int(args.local_batch_size * args.world_size)
- args.mini_batch_size = exact_div(
- args.batch_size, args.num_mini_batches, "`batch_size` must be a multiple of `num_mini_batches`"
- )
- args.local_mini_batch_size = exact_div(
- args.local_batch_size, args.num_mini_batches, "`local_batch_size` must be a multiple of `num_mini_batches`"
- )
- if args.whiten_rewards:
- assert (
- args.local_mini_batch_size >= 8
- ), f"Per-rank minibatch size {args.local_mini_batch_size} is insufficient for whitening"
- # `per_rank_rollout_batch_size` is our `args.local_batch_size`
- # `per_rank_minibatch_size` is our `args.local_mini_batch_size`
- args.num_total_batches = math.ceil(
- args.total_episodes / args.batch_size
- ) # we may train for more than `total_episodes`
- time_tensor = torch.tensor(int(time.time()), device=accelerator.device)
- time_int = broadcast(time_tensor, 0).item() # avoid different timestamps across processes
- args.run_name = f"{args.exp_name}__{args.seed}__{time_int}"
- self.local_seed = args.seed + accelerator.process_index * 100003 # Prime
- if args.num_sample_generations > 0:
- self.sample_generations_freq = max(1, args.num_total_batches // args.num_sample_generations)
- self.local_dataloader_batch_size = args.local_batch_size
- #########
- # setup model, optimizer, and others
- #########
- for module in [self.policy_model, self.ref_model, self.value_model, self.reward_model]:
- if module is not None:
- disable_dropout_in_model(module)
- self.model = PolicyAndValueWrapper(self.policy_model, self.value_model)
- self.model.config = self.policy_model.config # needed for pushing to hub
- self.create_optimizer_and_scheduler(
- num_training_steps=args.num_total_batches
- ) # note that we are calling `self.lr_scheduler.step()` manually only at the batch level
- #########
- ### trainer specifics
- #########
- default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
- self.callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
- self.callback_handler = CallbackHandler(
- self.callbacks, self.model, self.processing_class, self.optimizer, self.lr_scheduler
- )
- self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
- self.control = TrainerControl()
- self.state = OnlineTrainerState(
- is_local_process_zero=self.is_local_process_zero(),
- is_world_process_zero=self.is_world_process_zero(),
- stateful_callbacks=[
- cb for cb in self.callback_handler.callbacks + [self.control] if isinstance(cb, ExportableState)
- ],
- )
- self.current_flos = 0
- self.hp_search_backend = None
- self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None
- self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None
- # Create distant repo and output directory if needed
- self.hub_model_id = None
- if self.args.push_to_hub:
- self.init_hf_repo()
- if self.args.should_save:
- os.makedirs(self.args.output_dir, exist_ok=True)
- # Add tags for models that have been loaded with the correct transformers version
- if hasattr(self.model, "add_model_tags"):
- self.model.add_model_tags(self._tag_names)
- #########
- ### setup dataloader
- #########
- self.dataloader = DataLoader(
- self.train_dataset,
- batch_size=self.local_dataloader_batch_size,
- shuffle=True,
- collate_fn=self.data_collator,
- drop_last=True, # needed; otherwise the last batch will be of ragged shape
- )
- # sync random states for DataLoader(shuffle=True) before `accelerator.prepare`
- # see https://gist.github.com/vwxyzjn/2581bff1e48e185e0b85b6dfe1def79c
- torch.manual_seed(args.seed)
- self.model, self.optimizer, self.dataloader = accelerator.prepare(self.model, self.optimizer, self.dataloader)
- torch.manual_seed(self.local_seed) # reset the local seed again
- self.eval_dataloader = DataLoader(
- self.eval_dataset,
- batch_size=args.per_device_eval_batch_size,
- collate_fn=self.data_collator,
- drop_last=True,
- ) # no need to shuffle eval dataset
- self.eval_dataloader = accelerator.prepare(self.eval_dataloader)
- if self.is_deepspeed_enabled:
- self.reward_model = prepare_deepspeed(
- self.reward_model, args.per_device_train_batch_size, args.fp16, args.bf16
- )
- if self.ref_model is None:
- if not self.is_peft_model:
- raise ValueError("No reference model and model is not a Peft model.")
- else:
- self.ref_model = prepare_deepspeed(
- self.ref_model, args.per_device_train_batch_size, args.fp16, args.bf16
- )
- else:
- if self.ref_model is None:
- if not self.is_peft_model:
- raise ValueError("No reference model and model is not a Peft model.")
- else:
- self.ref_model = self.ref_model.to(self.accelerator.device)
- self.reward_model = self.reward_model.to(self.accelerator.device)
- def get_train_dataloader(self) -> DataLoader:
- return self.dataloader
- def get_eval_dataloader(self) -> DataLoader:
- return self.eval_dataloader
- @contextmanager
- def null_ref_context(self):
- """Context manager for handling null reference model (that is, peft adapter manipulation)."""
- with (
- self.accelerator.unwrap_model(self.model.policy).disable_adapter()
- if self.is_peft_model and not self.ref_adapter_name
- else nullcontext()
- ):
- if self.ref_adapter_name:
- self.model.policy.set_adapter(self.ref_adapter_name)
- yield
- if self.ref_adapter_name:
- self.model.policy.set_adapter(self.model_adapter_name or "default")
- def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
- backup_model = self.model
- self.model = self.model.policy # save only the policy
- if self.is_deepspeed_enabled:
- backup_deepspeed = self.deepspeed
- self.deepspeed = self.model
- super().save_model(output_dir, _internal_call)
- self.model = backup_model
- if self.is_deepspeed_enabled:
- self.deepspeed = backup_deepspeed
- def train(self):
- args = self.args
- accelerator = self.accelerator
- optimizer = self.optimizer
- model = self.model
- ref_policy = self.ref_model
- reward_model = self.reward_model
- processing_class = self.processing_class
- dataloader = self.dataloader
- device = accelerator.device
- def repeat_generator():
- while True:
- yield from dataloader
- iter_dataloader = iter(repeat_generator())
- generation_config = GenerationConfig(
- max_new_tokens=args.response_length,
- temperature=(args.temperature + 1e-7),
- top_k=0.0,
- top_p=1.0,
- do_sample=True,
- )
- accelerator.print("===training policy===")
- start_time = time.time()
- stats_shape = (args.num_ppo_epochs, args.num_mini_batches, args.gradient_accumulation_steps)
- approxkl_stats = torch.zeros(stats_shape, device=device)
- pg_clipfrac_stats = torch.zeros(stats_shape, device=device)
- pg_loss_stats = torch.zeros(stats_shape, device=device)
- vf_loss_stats = torch.zeros(stats_shape, device=device)
- vf_clipfrac_stats = torch.zeros(stats_shape, device=device)
- entropy_stats = torch.zeros(stats_shape, device=device)
- ratio_stats = torch.zeros(stats_shape, device=device)
- model.train()
- # trainer state initialization
- self.state.global_step = 0
- self.state.episode = 0
- self.state.max_steps = args.num_total_batches * args.num_mini_batches
- self.state.num_train_epochs = args.total_episodes / self.train_dataset_len
- # Compute absolute values for logging, eval, and save if given as ratio
- if args.logging_steps is not None:
- if args.logging_steps < 1:
- self.state.logging_steps = math.ceil(self.state.max_steps * args.logging_steps)
- else:
- self.state.logging_steps = args.logging_steps
- if args.eval_steps is not None:
- if args.eval_steps < 1:
- self.state.eval_steps = math.ceil(self.state.max_steps * args.eval_steps)
- else:
- self.state.eval_steps = args.eval_steps
- if args.save_steps is not None:
- if args.save_steps < 1:
- self.state.save_steps = math.ceil(self.state.max_steps * args.save_steps)
- else:
- self.state.save_steps = args.save_steps
- self.control = self.callback_handler.on_train_begin(args, self.state, self.control)
- # backward compatibility
- if self.is_deepspeed_enabled:
- self.deepspeed = self.model
- self.model_wrapped = self.model
- for update in range(1, args.num_total_batches + 1):
- self.state.episode += 1 * args.batch_size
- data = next(iter_dataloader)
- with torch.no_grad():
- queries = data["input_ids"].to(device)
- context_length = queries.shape[1]
- responses = []
- postprocessed_responses = []
- logprobs = []
- ref_logprobs = []
- scores = []
- sequence_lengths = []
- values = []
- with unwrap_model_for_generation(
- self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
- ) as unwrapped_model:
- query_responses, logitss = batch_generation(
- unwrapped_model.policy,
- queries,
- args.local_rollout_forward_batch_size,
- processing_class.pad_token_id,
- generation_config,
- )
- for i in range(0, queries.shape[0], args.local_rollout_forward_batch_size):
- query = queries[i : i + args.local_rollout_forward_batch_size]
- query_response = query_responses[i : i + args.local_rollout_forward_batch_size]
- response = query_response[:, context_length:]
- logits = logitss[i : i + args.local_rollout_forward_batch_size]
- logprob = selective_log_softmax(logits, response)
- del logits
- torch.cuda.empty_cache()
- if ref_policy is None:
- with self.null_ref_context():
- ref_output = forward(model.policy, query_response, processing_class.pad_token_id)
- else:
- ref_output = forward(ref_policy, query_response, processing_class.pad_token_id)
- ref_logits = ref_output.logits[:, context_length - 1 : -1]
- ref_logits /= args.temperature + 1e-7
- ref_logprob = selective_log_softmax(ref_logits, response)
- del ref_output, ref_logits
- torch.cuda.empty_cache()
- # Response Processing 1. truncate response after the first occurrence of `stop_token_id`
- postprocessed_response = response
- if self.stop_token_id is not None: # handle the edge case when stop_token_id exists but is 0
- postprocessed_response = truncate_response(
- self.stop_token_id, processing_class.pad_token_id, response
- )
- # Response Processing 2. run reward model on the truncated responses
- postprocessed_query_response = torch.cat((query, postprocessed_response), 1)
- sequence_length = first_true_indices(postprocessed_response == processing_class.pad_token_id) - 1
- unwrapped_value_model = accelerator.unwrap_model(model).value_model
- full_value, _, _ = get_reward(
- unwrapped_value_model, query_response, processing_class.pad_token_id, context_length
- )
- value = full_value[:, context_length - 1 : -1].squeeze(-1)
- _, score, _ = get_reward(
- reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length
- )
- responses.append(response)
- postprocessed_responses.append(postprocessed_response)
- logprobs.append(logprob)
- ref_logprobs.append(ref_logprob)
- sequence_lengths.append(sequence_length)
- scores.append(score)
- values.append(value)
- responses = torch.cat(responses, 0)
- postprocessed_responses = torch.cat(postprocessed_responses, 0)
- logprobs = torch.cat(logprobs, 0)
- ref_logprobs = torch.cat(ref_logprobs, 0)
- sequence_lengths = torch.cat(sequence_lengths, 0)
- scores = torch.cat(scores, 0)
- values = torch.cat(values, 0)
- del (logprob, ref_logprob, full_value, value, score, unwrapped_model)
- torch.cuda.empty_cache()
- gc.collect()
- # Response Processing 3. Filter completion. Ensure that the sample contains stop_token_id
- # Completions not passing that filter will receive a lower score.
- contain_eos_token = torch.any(postprocessed_responses == self.processing_class.eos_token_id, dim=-1)
- if self.args.missing_eos_penalty is not None:
- scores[~contain_eos_token] -= self.args.missing_eos_penalty
- # accelerator.print(f"{scores=}, {(contain_eos_token.sum() / len(contain_eos_token))=}")
- # be very careful with `padding_mask_p1`; see https://excalidraw.com/#json=LWnzG4w2k5DjF_EOL_xPt,e2w3a-hFJ_gX5vOfeyXGTw
- response_idxs = torch.arange(responses.shape[1], device=responses.device).repeat(responses.shape[0], 1)
- padding_mask = response_idxs > sequence_lengths.unsqueeze(1)
- logprobs = torch.masked_fill(logprobs, padding_mask, INVALID_LOGPROB)
- ref_logprobs = torch.masked_fill(ref_logprobs, padding_mask, INVALID_LOGPROB)
- sequence_lengths_p1 = sequence_lengths + 1
- padding_mask_p1 = response_idxs > (sequence_lengths_p1.unsqueeze(1))
- values = torch.masked_fill(values, padding_mask_p1, 0)
- # 4. compute rewards
- kl = logprobs - ref_logprobs
- non_score_reward = -args.kl_coef * kl
- rewards = non_score_reward.clone()
- actual_start = torch.arange(rewards.size(0), device=rewards.device)
- actual_end = torch.where(sequence_lengths_p1 < rewards.size(1), sequence_lengths_p1, sequence_lengths)
- rewards[[actual_start, actual_end]] += scores
- # 5. whiten rewards
- if args.whiten_rewards:
- rewards = masked_whiten(rewards, mask=~padding_mask_p1, shift_mean=False)
- rewards = torch.masked_fill(rewards, padding_mask_p1, 0)
- # 6. compute advantages and returns
- lastgaelam = 0
- advantages_reversed = []
- gen_length = responses.shape[1]
- for t in reversed(range(gen_length)):
- nextvalues = values[:, t + 1] if t < gen_length - 1 else 0.0
- delta = rewards[:, t] + args.gamma * nextvalues - values[:, t]
- lastgaelam = delta + args.gamma * args.lam * lastgaelam
- advantages_reversed.append(lastgaelam)
- advantages = torch.stack(advantages_reversed[::-1], axis=1)
- returns = advantages + values
- advantages = masked_whiten(advantages, ~padding_mask)
- advantages = torch.masked_fill(advantages, padding_mask, 0)
- torch.cuda.empty_cache()
- # Do multiple epochs of PPO training, with a fresh random shuffle in each epoch
- for ppo_epoch_idx in range(args.num_ppo_epochs):
- b_inds = np.random.permutation(args.local_batch_size)
- minibatch_idx = 0
- for mini_batch_start in range(0, args.local_batch_size, args.local_mini_batch_size):
- mini_batch_end = mini_batch_start + args.local_mini_batch_size
- mini_batch_inds = b_inds[mini_batch_start:mini_batch_end]
- gradient_accumulation_idx = 0
- for micro_batch_start in range(0, args.local_mini_batch_size, args.per_device_train_batch_size):
- with accelerator.accumulate(model):
- micro_batch_end = micro_batch_start + args.per_device_train_batch_size
- micro_batch_inds = mini_batch_inds[micro_batch_start:micro_batch_end]
- mb_advantage = advantages[micro_batch_inds]
- mb_responses = responses[micro_batch_inds]
- mb_query_responses = query_responses[micro_batch_inds]
- mb_logprobs = logprobs[micro_batch_inds]
- mb_return = returns[micro_batch_inds]
- mb_values = values[micro_batch_inds]
- output, vpred_temp = forward(model, mb_query_responses, processing_class.pad_token_id)
- logits = output.logits[:, context_length - 1 : -1]
- logits /= args.temperature + 1e-7
- new_logprobs = selective_log_softmax(logits, mb_responses)
- new_logprobs = torch.masked_fill(
- new_logprobs, padding_mask[micro_batch_inds], INVALID_LOGPROB
- )
- vpred = vpred_temp[:, context_length - 1 : -1].squeeze(-1)
- vpred = torch.masked_fill(vpred, padding_mask_p1[micro_batch_inds], 0)
- vpredclipped = torch.clamp(
- vpred,
- mb_values - args.cliprange_value,
- mb_values + args.cliprange_value,
- )
- vf_losses1 = torch.square(vpred - mb_return)
- vf_losses2 = torch.square(vpredclipped - mb_return)
- vf_loss_max = torch.max(vf_losses1, vf_losses2)
- vf_loss = 0.5 * masked_mean(vf_loss_max, ~padding_mask_p1[micro_batch_inds])
- vf_clipfrac = masked_mean(
- (vf_losses2 > vf_losses1).float(), ~padding_mask_p1[micro_batch_inds]
- )
- logprobs_diff = new_logprobs - mb_logprobs
- ratio = torch.exp(logprobs_diff)
- pg_losses = -mb_advantage * ratio
- pg_losses2 = -mb_advantage * torch.clamp(ratio, 1.0 - args.cliprange, 1.0 + args.cliprange)
- pg_loss_max = torch.max(pg_losses, pg_losses2)
- pg_loss = masked_mean(pg_loss_max, ~padding_mask[micro_batch_inds])
- loss = pg_loss + args.vf_coef * vf_loss
- accelerator.backward(loss)
- optimizer.step()
- optimizer.zero_grad()
- with torch.no_grad():
- pg_clipfrac = masked_mean(
- (pg_losses2 > pg_losses).float(), ~padding_mask[micro_batch_inds]
- )
- prob_dist = torch.nn.functional.softmax(logits, dim=-1)
- entropy = torch.logsumexp(logits, dim=-1) - torch.sum(prob_dist * logits, dim=-1)
- approxkl = 0.5 * (logprobs_diff**2).mean()
- approxkl_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = approxkl
- pg_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = (
- pg_clipfrac
- )
- pg_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = pg_loss
- vf_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = vf_loss
- vf_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = (
- vf_clipfrac
- )
- entropy_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = entropy.mean()
- ratio_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = ratio.mean()
- gradient_accumulation_idx += 1
- minibatch_idx += 1
- # del everything and empty cache
- # fmt: off
- del (
- output, vpred_temp, logits, new_logprobs, vpred, vpredclipped,
- vf_losses1, vf_losses2, vf_loss, vf_clipfrac, logprobs_diff, ratio, pg_losses, pg_losses2, pg_loss_max,
- pg_loss, loss, pg_clipfrac, prob_dist, entropy, approxkl, mb_return,
- mb_advantage, mb_values, mb_responses, mb_query_responses, mb_logprobs,
- )
- # fmt: on
- torch.cuda.empty_cache()
- with torch.no_grad():
- mean_kl = kl.sum(1).mean()
- mean_entropy = (-logprobs).sum(1).mean()
- mean_non_score_reward = non_score_reward.sum(1).mean()
- rlhf_reward = mean_non_score_reward + scores.mean()
- eps = int(self.state.episode / (time.time() - start_time))
- metrics = {}
- metrics["eps"] = eps
- metrics["objective/kl"] = self.accelerator.gather_for_metrics(mean_kl).mean().item()
- metrics["objective/entropy"] = self.accelerator.gather_for_metrics(mean_entropy).mean().item()
- metrics["objective/non_score_reward"] = (
- self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item()
- )
- metrics["objective/rlhf_reward"] = self.accelerator.gather_for_metrics(rlhf_reward).mean().item()
- metrics["objective/scores"] = self.accelerator.gather_for_metrics(scores.mean()).mean().item()
- metrics["policy/approxkl_avg"] = self.accelerator.gather_for_metrics(approxkl_stats).mean().item()
- metrics["policy/clipfrac_avg"] = self.accelerator.gather_for_metrics(pg_clipfrac_stats).mean().item()
- metrics["loss/policy_avg"] = self.accelerator.gather_for_metrics(pg_loss_stats).mean().item()
- metrics["loss/value_avg"] = self.accelerator.gather_for_metrics(vf_loss_stats).mean().item()
- metrics["val/clipfrac_avg"] = self.accelerator.gather_for_metrics(vf_clipfrac_stats).mean().item()
- metrics["policy/entropy_avg"] = self.accelerator.gather_for_metrics(entropy_stats).mean().item()
- metrics["val/ratio"] = self.accelerator.gather_for_metrics(ratio_stats).mean().item()
- metrics["val/ratio_var"] = self.accelerator.gather_for_metrics(ratio_stats).var().item()
- metrics["val/num_eos_tokens"] = (responses == processing_class.eos_token_id).sum().item()
- metrics["lr"] = self.lr_scheduler.get_last_lr()[0]
- metrics["episode"] = self.state.episode
- self.state.epoch = self.state.episode / self.train_dataset_len # used by self.log
- self.state.global_step += 1
- self.log(metrics)
- self.lr_scheduler.step()
- self.control = self.callback_handler.on_step_end(args, self.state, self.control)
- if self.control.should_save:
- self._save_checkpoint(model, trial=None)
- self.control = self.callback_handler.on_save(self.args, self.state, self.control)
- del kl, mean_kl, mean_entropy, mean_non_score_reward, scores, metrics, non_score_reward
- torch.cuda.empty_cache()
- gc.collect()
- if args.num_sample_generations > 0 and (update - 1) % self.sample_generations_freq == 0:
- self.generate_completions(sampling=True)
- torch.cuda.empty_cache()
- del (
- query_responses,
- responses,
- postprocessed_responses,
- logprobs,
- ref_logprobs,
- values,
- sequence_lengths,
- contain_eos_token,
- sequence_lengths_p1,
- response_idxs,
- padding_mask,
- padding_mask_p1,
- rewards,
- actual_start,
- actual_end,
- advantages,
- returns,
- )
- torch.cuda.empty_cache()
- # HF trainer specifics
- self.control = self.callback_handler.on_train_end(args, self.state, self.control)
- if self.control.should_save:
- self._save_checkpoint(model, trial=None, metrics=None)
- self.control = self.callback_handler.on_save(self.args, self.state, self.control)
- def generate_completions(self, sampling: bool = False):
- args = self.args
- processing_class = self.processing_class
- generation_config = GenerationConfig(
- max_new_tokens=self.args.response_length,
- temperature=(0.01 + 1e-7),
- top_k=0.0,
- top_p=1.0,
- do_sample=True,
- )
- table = defaultdict(list)
- with unwrap_model_for_generation(
- self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
- ) as unwrapped_model:
- for batch in self.eval_dataloader:
- query = batch["input_ids"]
- with torch.no_grad():
- context_length = query.shape[1]
- query_response, _ = batch_generation(
- unwrapped_model.policy,
- query,
- query.shape[0],
- processing_class.pad_token_id,
- generation_config,
- )
- response = query_response[:, context_length:]
- postprocessed_response = response
- if self.stop_token_id is not None: # handle the edge case when stop_token_id exists but is 0
- postprocessed_response = truncate_response(
- self.stop_token_id, processing_class.pad_token_id, response
- )
- table["query"].extend(
- gather_object(processing_class.batch_decode(query, skip_special_tokens=True))
- )
- table["model response"].extend(
- gather_object(processing_class.batch_decode(postprocessed_response))
- )
- postprocessed_query_response = torch.cat((query, postprocessed_response), 1)
- _, score, _ = get_reward(
- self.reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length
- )
- table["score"].extend(self.accelerator.gather_for_metrics(score).float().cpu().numpy())
- if sampling:
- break
- df = pd.DataFrame(table)
- if self.accelerator.is_main_process:
- print_rich_table(df.iloc[0 : 0 + 5])
- if "wandb" in args.report_to:
- import wandb
- if wandb.run is not None:
- wandb.log({"completions": wandb.Table(dataframe=df)})
- if "comet_ml" in args.report_to:
- log_table_to_comet_experiment(
- name="completions.csv",
- table=df,
- )
- def create_model_card(
- self,
- model_name: Optional[str] = None,
- dataset_name: Optional[str] = None,
- tags: Union[str, list[str], None] = None,
- ):
- """
- Creates a draft of a model card using the information available to the `Trainer`.
- Args:
- model_name (`str` or `None`, *optional*, defaults to `None`):
- Name of the model.
- dataset_name (`str` or `None`, *optional*, defaults to `None`):
- Name of the dataset used for training.
- tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
- Tags to be associated with the model card.
- """
- if not self.is_world_process_zero():
- return
- if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
- base_model = self.model.config._name_or_path
- else:
- base_model = None
- tags = tags or []
- if isinstance(tags, str):
- tags = [tags]
- if hasattr(self.model.config, "unsloth_version"):
- tags.append("unsloth")
- citation = textwrap.dedent("""\
- @article{mziegler2019fine-tuning,
- title = {{Fine-Tuning Language Models from Human Preferences}},
- author = {Daniel M. Ziegler and Nisan Stiennon and Jeffrey Wu and Tom B. Brown and Alec Radford and Dario Amodei and Paul F. Christiano and Geoffrey Irving},
- year = 2019,
- eprint = {arXiv:1909.08593}
- }""")
- model_card = generate_model_card(
- base_model=base_model,
- model_name=model_name,
- hub_model_id=self.hub_model_id,
- dataset_name=dataset_name,
- tags=tags,
- wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
- comet_url=get_comet_experiment_url(),
- trainer_name="PPO",
- trainer_citation=citation,
- paper_title="Fine-Tuning Language Models from Human Preferences",
- paper_id="1909.08593",
- )
- model_card.save(os.path.join(self.args.output_dir, "README.md"))
- class UnslothPPOTrainer(_UnslothPPOTrainer):
- """
-
- """
- def __init__(
- self,
- args,
- processing_class,
- model,
- ref_model,
- reward_model,
- train_dataset,
- value_model = None,
- data_collator = None,
- eval_dataset = None,
- callbacks = None,
- peft_config = None,
- **kwargs
- ):
- if args is None: args = UnslothPPOConfig()
- use_bf16 = getattr(args, 'bf16', False)
- use_fp16 = getattr(args, 'fp16', False)
- dtype = getattr(model.config, 'torch_dtype', None)
- if dtype is None: dtype = model.get_input_embeddings().dtype
- from unsloth_zoo.utils import _get_dtype
- dtype = _get_dtype(dtype)
- float16 = dtype == torch.float16
- if float16 and use_bf16: raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
- if not float16 and use_fp16: raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
- if not use_bf16 and not use_fp16:
- args.fp16 = float16
- args.bf16 = not float16
- os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
- if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
- args.eval_strategy = 'steps'
- if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
- ga_steps = getattr(args, 'gradient_accumulation_steps', None)
- if ga_steps is not None and ga_steps > 1:
- from transformers import __version__ as transformers_version
- if Version(transformers_version) <= Version('4.45.2'):
- print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
- '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
- if getattr(args, 'eval_strategy', 'no') != 'no':
- eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
- if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
- if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
- fp16_full_eval = getattr(args, 'fp16_full_eval', False)
- bf16_full_eval = getattr(args, 'bf16_full_eval', False)
- if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
- if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
- if not bf16_full_eval and not fp16_full_eval: args.bf16_full_eval = args.bf16; args.fp16_full_eval = args.fp16
- if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
- pass
- else:
- model_max_seq_length = getattr(model, 'max_seq_length', None)
- args_max_seq_length = getattr(args, 'max_seq_length', None)
- if args_max_seq_length is None and model_max_seq_length is not None:
- max_seq_length = model.max_seq_length
- if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
- if model is not None and hasattr(model, 'for_training'):
- model.for_training()
- if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
- if 'processing_class' in locals():
- if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
- if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
- other_metrics = []
-
- from unsloth_zoo.logging_utils import PatchRLStatistics
- PatchRLStatistics('ppo_trainer', other_metrics)
-
- super().__init__(
- args = args,
- processing_class = processing_class,
- model = model,
- ref_model = ref_model,
- reward_model = reward_model,
- train_dataset = train_dataset,
- value_model = value_model,
- data_collator = data_collator,
- eval_dataset = eval_dataset,
- callbacks = callbacks,
- peft_config = peft_config,**kwargs)
- if hasattr(self, 'neftune_hook_handle'):
- self.neftune_hook_handle.remove()
- if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
- if getattr(args, 'neftune_noise_alpha', None) is not None:
- model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
- pass
-
- pass
|