| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813 |
- from torch import Tensor
- import torch
- import torch.nn as nn
- from torch.nn import functional as F
- from trl.trainer.gkd_trainer import (Any, AutoModelForCausalLM, BaseImageProcessor, Callable, DataCollator, DataCollatorForChatML, Dataset, EvalPrediction, F, FeatureExtractionMixin, GKDConfig, GKDTrainer, GenerationConfig, Optional, PeftConfig, PreTrainedModel, PreTrainedModelWrapper, PreTrainedTokenizerBase, ProcessorMixin, SFTTrainer, TrainerCallback, Union, deepcopy, disable_dropout_in_model, empty_cache, generate_model_card, get_comet_experiment_url, is_wandb_available, nn, os, random, textwrap, torch, unwrap_model_for_generation)
- import os
- from typing import *
- from dataclasses import dataclass, field
- from packaging.version import Version
- import torch
- import numpy as np
- from contextlib import nullcontext
- from torch.nn import functional as F
- torch_compile_options = {
- "epilogue_fusion" : True,
- "max_autotune" : False,
- "shape_padding" : True,
- "trace.enabled" : False,
- "triton.cudagraphs" : False,
- }
- @torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
- def selective_log_softmax(logits, index):
- logits = logits.to(torch.float32)
- selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
- # loop to reduce peak mem consumption
- # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
- logsumexp_values = torch.logsumexp(logits, dim = -1)
- per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x)
- return per_token_logps
- @dataclass
- class UnslothGKDConfig(GKDConfig):
- """
-
- Configuration class for [`GKDTrainer`].
- Args:
- temperature (`float`, *optional*, defaults to `0.9`):
- Temperature for sampling. The higher the temperature, the more random the completions.
- lmbda (`float`, *optional*, defaults to `0.5`):
- Lambda parameter that controls the student data fraction (i.e., the proportion of on-policy
- student-generated outputs).
- beta (`float`, *optional*, defaults to `0.5`):
- Interpolation coefficient between `0.0` and `1.0` of the Generalized Jensen-Shannon Divergence loss. When
- beta is `0.0`, the loss is the KL divergence. When beta is `1.0`, the loss is the Inverse KL Divergence.
- max_new_tokens (`int`, *optional*, defaults to `128`):
- Maximum number of tokens to generate per completion.
- teacher_model_name_or_path (`str` or `None`, *optional*, defaults to `None`):
- Model name or path of the teacher model. If `None`, the teacher model will be the same as the model
- being trained.
- teacher_model_init_kwargs (`dict[str, Any]]` or `None`, *optional*, defaults to `None`):
- Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the teacher model
- from a string.
- disable_dropout (`bool`, *optional*, defaults to `True`):
- Whether to disable dropout in the model.
- seq_kd (`bool`, *optional*, defaults to `False`):
- Seq_kd parameter that controls whether to perform Sequence-Level KD (can be viewed as supervised FT
- on teacher-generated output).
-
- """
- vllm_sampling_params: Optional[Any] = field(
- default = None,
- metadata = {'help': 'vLLM SamplingParams'},
- )
- unsloth_num_chunks : Optional[int] = field(
- default = -1,
- metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
- )
- def __init__(
- self,
- output_dir = None,
- overwrite_output_dir = None,
- do_train = False,
- do_eval = False,
- do_predict = False,
- eval_strategy = 'no',
- prediction_loss_only = False,
- per_device_train_batch_size = 4,
- per_device_eval_batch_size = 4,
- per_gpu_train_batch_size = None,
- per_gpu_eval_batch_size = None,
- gradient_accumulation_steps = 2,
- eval_accumulation_steps = 2,
- eval_delay = 0,
- torch_empty_cache_steps = 250,
- learning_rate = 5e-05,
- weight_decay = 0.01,
- adam_beta1 = 0.9,
- adam_beta2 = 0.999,
- adam_epsilon = 1e-08,
- max_grad_norm = 1.0,
- num_train_epochs = 3.0,
- max_steps = -1,
- lr_scheduler_type = 'linear',
- warmup_ratio = 0.1,
- warmup_steps = 0,
- log_level = 'passive',
- log_level_replica = 'warning',
- log_on_each_node = True,
- logging_dir = None,
- logging_strategy = 'steps',
- logging_first_step = False,
- logging_steps = 1,
- logging_nan_inf_filter = False,
- save_strategy = 'steps',
- save_steps = 500,
- save_total_limit = None,
- save_safetensors = True,
- save_on_each_node = False,
- save_only_model = False,
- restore_callback_states_from_checkpoint = False,
- no_cuda = False,
- use_cpu = False,
- use_mps_device = False,
- seed = 3407,
- data_seed = 3407,
- jit_mode_eval = False,
- use_ipex = False,
- bf16 = False,
- fp16 = False,
- fp16_opt_level = 'O1',
- half_precision_backend = 'auto',
- bf16_full_eval = False,
- fp16_full_eval = False,
- tf32 = None,
- local_rank = -1,
- ddp_backend = None,
- tpu_num_cores = None,
- tpu_metrics_debug = False,
- debug = '',
- dataloader_drop_last = False,
- eval_steps = None,
- dataloader_num_workers = 0,
- dataloader_prefetch_factor = None,
- past_index = -1,
- run_name = None,
- disable_tqdm = None,
- remove_unused_columns = True,
- label_names = None,
- load_best_model_at_end = False,
- metric_for_best_model = None,
- greater_is_better = None,
- ignore_data_skip = False,
- fsdp = '',
- fsdp_min_num_params = 0,
- fsdp_config = None,
- fsdp_transformer_layer_cls_to_wrap = None,
- accelerator_config = None,
- deepspeed = None,
- label_smoothing_factor = 0.0,
- optim = 'adamw_8bit',
- optim_args = None,
- adafactor = False,
- group_by_length = False,
- length_column_name = 'length',
- report_to = None,
- ddp_find_unused_parameters = None,
- ddp_bucket_cap_mb = None,
- ddp_broadcast_buffers = None,
- dataloader_pin_memory = True,
- dataloader_persistent_workers = False,
- skip_memory_metrics = True,
- use_legacy_prediction_loop = False,
- push_to_hub = False,
- resume_from_checkpoint = None,
- hub_model_id = None,
- hub_strategy = 'every_save',
- hub_token = None,
- hub_private_repo = None,
- hub_always_push = False,
- gradient_checkpointing = False,
- gradient_checkpointing_kwargs = None,
- include_inputs_for_metrics = False,
- eval_do_concat_batches = True,
- fp16_backend = 'auto',
- evaluation_strategy = None,
- push_to_hub_model_id = None,
- push_to_hub_organization = None,
- push_to_hub_token = None,
- mp_parameters = '',
- auto_find_batch_size = False,
- full_determinism = False,
- torchdynamo = None,
- ray_scope = 'last',
- ddp_timeout = 1800,
- torch_compile = False,
- torch_compile_backend = None,
- torch_compile_mode = None,
- dispatch_batches = None,
- split_batches = None,
- include_tokens_per_second = False,
- include_num_input_tokens_seen = False,
- neftune_noise_alpha = None,
- optim_target_modules = None,
- batch_eval_metrics = False,
- eval_on_start = False,
- use_liger_kernel = False,
- eval_use_gather_object = False,
- average_tokens_across_devices = False,
- model_init_kwargs = None,
- use_liger = False,
- dataset_text_field = 'text',
- dataset_kwargs = None,
- dataset_num_proc = None,
- max_seq_length = 1024,
- packing = False,
- eval_packing = None,
- dataset_batch_size = None,
- num_of_sequences = None,
- chars_per_token = None,
- temperature = 0.9,
- lmbda = 0.5,
- beta = 0.5,
- max_new_tokens = 128,
- teacher_model_name_or_path = None,
- teacher_model_init_kwargs = None,
- disable_dropout = True,
- seq_kd = False,
- vllm_sampling_params = None,
- unsloth_num_chunks = -1,
- **kwargs,
- ):
- if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
- if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
- if output_dir is None and save_strategy == 'steps' and save_steps == 500:
- output_dir = 'unsloth_training_checkpoints'
- save_strategy = 'no'
- if dataset_num_proc is None:
- from multiprocessing import cpu_count
- dataset_num_proc = cpu_count()
-
- super().__init__(
- output_dir = output_dir,
- overwrite_output_dir = overwrite_output_dir,
- do_train = do_train,
- do_eval = do_eval,
- do_predict = do_predict,
- eval_strategy = eval_strategy,
- prediction_loss_only = prediction_loss_only,
- per_device_train_batch_size = per_device_train_batch_size,
- per_device_eval_batch_size = per_device_eval_batch_size,
- per_gpu_train_batch_size = per_gpu_train_batch_size,
- per_gpu_eval_batch_size = per_gpu_eval_batch_size,
- gradient_accumulation_steps = gradient_accumulation_steps,
- eval_accumulation_steps = eval_accumulation_steps,
- eval_delay = eval_delay,
- torch_empty_cache_steps = torch_empty_cache_steps,
- learning_rate = learning_rate,
- weight_decay = weight_decay,
- adam_beta1 = adam_beta1,
- adam_beta2 = adam_beta2,
- adam_epsilon = adam_epsilon,
- max_grad_norm = max_grad_norm,
- num_train_epochs = num_train_epochs,
- max_steps = max_steps,
- lr_scheduler_type = lr_scheduler_type,
- warmup_ratio = warmup_ratio,
- warmup_steps = warmup_steps,
- log_level = log_level,
- log_level_replica = log_level_replica,
- log_on_each_node = log_on_each_node,
- logging_dir = logging_dir,
- logging_strategy = logging_strategy,
- logging_first_step = logging_first_step,
- logging_steps = logging_steps,
- logging_nan_inf_filter = logging_nan_inf_filter,
- save_strategy = save_strategy,
- save_steps = save_steps,
- save_total_limit = save_total_limit,
- save_safetensors = save_safetensors,
- save_on_each_node = save_on_each_node,
- save_only_model = save_only_model,
- restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
- no_cuda = no_cuda,
- use_cpu = use_cpu,
- use_mps_device = use_mps_device,
- seed = seed,
- data_seed = data_seed,
- jit_mode_eval = jit_mode_eval,
- use_ipex = use_ipex,
- bf16 = bf16,
- fp16 = fp16,
- fp16_opt_level = fp16_opt_level,
- half_precision_backend = half_precision_backend,
- bf16_full_eval = bf16_full_eval,
- fp16_full_eval = fp16_full_eval,
- tf32 = tf32,
- local_rank = local_rank,
- ddp_backend = ddp_backend,
- tpu_num_cores = tpu_num_cores,
- tpu_metrics_debug = tpu_metrics_debug,
- debug = debug,
- dataloader_drop_last = dataloader_drop_last,
- eval_steps = eval_steps,
- dataloader_num_workers = dataloader_num_workers,
- dataloader_prefetch_factor = dataloader_prefetch_factor,
- past_index = past_index,
- run_name = run_name,
- disable_tqdm = disable_tqdm,
- remove_unused_columns = remove_unused_columns,
- label_names = label_names,
- load_best_model_at_end = load_best_model_at_end,
- metric_for_best_model = metric_for_best_model,
- greater_is_better = greater_is_better,
- ignore_data_skip = ignore_data_skip,
- fsdp = fsdp,
- fsdp_min_num_params = fsdp_min_num_params,
- fsdp_config = fsdp_config,
- fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
- accelerator_config = accelerator_config,
- deepspeed = deepspeed,
- label_smoothing_factor = label_smoothing_factor,
- optim = optim,
- optim_args = optim_args,
- adafactor = adafactor,
- group_by_length = group_by_length,
- length_column_name = length_column_name,
- report_to = report_to,
- ddp_find_unused_parameters = ddp_find_unused_parameters,
- ddp_bucket_cap_mb = ddp_bucket_cap_mb,
- ddp_broadcast_buffers = ddp_broadcast_buffers,
- dataloader_pin_memory = dataloader_pin_memory,
- dataloader_persistent_workers = dataloader_persistent_workers,
- skip_memory_metrics = skip_memory_metrics,
- use_legacy_prediction_loop = use_legacy_prediction_loop,
- push_to_hub = push_to_hub,
- resume_from_checkpoint = resume_from_checkpoint,
- hub_model_id = hub_model_id,
- hub_strategy = hub_strategy,
- hub_token = hub_token,
- hub_private_repo = hub_private_repo,
- hub_always_push = hub_always_push,
- gradient_checkpointing = gradient_checkpointing,
- gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
- include_inputs_for_metrics = include_inputs_for_metrics,
- eval_do_concat_batches = eval_do_concat_batches,
- fp16_backend = fp16_backend,
- evaluation_strategy = evaluation_strategy,
- push_to_hub_model_id = push_to_hub_model_id,
- push_to_hub_organization = push_to_hub_organization,
- push_to_hub_token = push_to_hub_token,
- mp_parameters = mp_parameters,
- auto_find_batch_size = auto_find_batch_size,
- full_determinism = full_determinism,
- torchdynamo = torchdynamo,
- ray_scope = ray_scope,
- ddp_timeout = ddp_timeout,
- torch_compile = torch_compile,
- torch_compile_backend = torch_compile_backend,
- torch_compile_mode = torch_compile_mode,
- dispatch_batches = dispatch_batches,
- split_batches = split_batches,
- include_tokens_per_second = include_tokens_per_second,
- include_num_input_tokens_seen = include_num_input_tokens_seen,
- neftune_noise_alpha = neftune_noise_alpha,
- optim_target_modules = optim_target_modules,
- batch_eval_metrics = batch_eval_metrics,
- eval_on_start = eval_on_start,
- use_liger_kernel = use_liger_kernel,
- eval_use_gather_object = eval_use_gather_object,
- average_tokens_across_devices = average_tokens_across_devices,
- model_init_kwargs = model_init_kwargs,
- use_liger = use_liger,
- dataset_text_field = dataset_text_field,
- dataset_kwargs = dataset_kwargs,
- dataset_num_proc = dataset_num_proc,
- max_seq_length = max_seq_length,
- packing = packing,
- eval_packing = eval_packing,
- dataset_batch_size = dataset_batch_size,
- num_of_sequences = num_of_sequences,
- chars_per_token = chars_per_token,
- temperature = temperature,
- lmbda = lmbda,
- beta = beta,
- max_new_tokens = max_new_tokens,
- teacher_model_name_or_path = teacher_model_name_or_path,
- teacher_model_init_kwargs = teacher_model_init_kwargs,
- disable_dropout = disable_dropout,
- seq_kd = seq_kd,**kwargs)
- self.vllm_sampling_params = vllm_sampling_params
- self.unsloth_num_chunks = unsloth_num_chunks
- pass
- class _UnslothGKDTrainer(SFTTrainer):
- _tag_names = ["trl", "gkd"]
- def __init__(
- self,
- model: Optional[Union[PreTrainedModel, nn.Module, str]] = None,
- teacher_model: Union[PreTrainedModel, nn.Module, str] = None,
- args: Optional[GKDConfig] = None,
- data_collator: Optional[DataCollator] = None, # type: ignore
- train_dataset: Optional[Dataset] = None,
- eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
- processing_class: Optional[
- Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
- ] = None,
- compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
- callbacks: Optional[list[TrainerCallback]] = None,
- optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
- preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
- peft_config: Optional["PeftConfig"] = None,
- formatting_func: Optional[Callable] = None,
- ):
- # add remove_unused_columns=False to the dataclass args
- args.remove_unused_columns = False
- data_collator = DataCollatorForChatML(tokenizer=processing_class, max_length=args.max_seq_length)
- super().__init__(
- model,
- args=args,
- data_collator=data_collator,
- train_dataset=train_dataset,
- eval_dataset=eval_dataset,
- processing_class=processing_class,
- compute_metrics=compute_metrics,
- callbacks=callbacks,
- optimizers=optimizers,
- preprocess_logits_for_metrics=preprocess_logits_for_metrics,
- peft_config=peft_config,
- formatting_func=formatting_func,
- )
- if args.teacher_model_init_kwargs is None:
- teacher_model_init_kwargs = {}
- elif not isinstance(teacher_model, str):
- raise ValueError(
- "You passed teacher_model_init_kwargs to the GKDConfig, but your teacher_model is already instantiated."
- )
- else:
- teacher_model_init_kwargs = args.teacher_model_init_kwargs
- teacher_model_init_kwargs["torch_dtype"] = (
- teacher_model_init_kwargs["torch_dtype"]
- if teacher_model_init_kwargs["torch_dtype"] in ["auto", None]
- else getattr(torch, teacher_model_init_kwargs["torch_dtype"])
- )
- if isinstance(teacher_model, str):
- if args.use_liger:
- teacher_model = AutoLigerKernelForCausalLM.from_pretrained(teacher_model, **teacher_model_init_kwargs)
- else:
- teacher_model = AutoModelForCausalLM.from_pretrained(teacher_model, **teacher_model_init_kwargs)
- # Disable dropout in the model
- if args.disable_dropout:
- disable_dropout_in_model(self.model)
- if self.is_deepspeed_enabled:
- self.teacher_model = self._prepare_deepspeed(teacher_model)
- else:
- self.teacher_model = self.accelerator.prepare_model(teacher_model, evaluation_mode=True)
- self.lmbda = args.lmbda
- self.beta = args.beta
- self.temperature = args.temperature
- self.seq_kd = args.seq_kd
- self.generation_config = GenerationConfig(
- max_new_tokens=args.max_new_tokens,
- temperature=args.temperature,
- do_sample=True,
- top_k=0,
- use_cache=False if args.gradient_checkpointing else True,
- pad_token_id=self.processing_class.pad_token_id,
- )
- # Set custom EOS tokens if they are specified by the model's generation
- # config. This is important for models with the Llama 3 chat template,
- # which use special tokens <|eot_id|> and <|eom_id|> to mark the end of
- # turns or messages.
- if (
- hasattr(self.model.generation_config, "eos_token_id")
- and self.model.generation_config.eos_token_id is not None
- ):
- self.generation_config.eos_token_id = self.model.generation_config.eos_token_id
- def _prepare_dataset(self, dataset, *args):
- # SFTTrainer._prepare_dataset() applies the chat template and rename the messages column to text. However, we
- # need to keep the messages column as it is. We use the following workaround to keep the messages column.
- dataset = dataset.add_column("_messages", dataset["messages"])
- dataset = super()._prepare_dataset(dataset, *args)
- dataset = dataset.rename_column("_messages", "messages")
- return dataset
- @staticmethod
- def generalized_jsd_loss(
- student_logits, teacher_logits, labels=None, beta=0.5, temperature=1.0, reduction="batchmean"
- ):
- """
- Compute the generalized Jensen-Shannon Divergence loss for knowledge distillation using F.kl_div. See Eq. (1)
- of https://huggingface.co/papers/2306.13649 for the definition.
- Args:
- student_logits: Tensor of shape (batch_size, sequence_length, vocab_size)
- teacher_logits: Tensor of shape (batch_size, sequence_length, vocab_size)
- labels: Tensor of shape (batch_size, sequence_length) with -100 for padding tokens to ignore when computing loss
- beta: Interpolation coefficient between 0 and 1 (default: 0.5)
- temperature: Softmax temperature (default: 1.0)
- reduction: Specifies the reduction to apply to the output (default: 'batchmean')
- Returns:
- loss: Scalar tensor with the generalized JSD loss
- """
- # Apply temperature scaling
- student_logits = student_logits / temperature
- teacher_logits = teacher_logits / temperature
- # Compute log probabilities for student and probabilities for teacher
- student_log_probs = F.log_softmax(student_logits, dim=-1)
- teacher_log_probs = F.log_softmax(teacher_logits, dim=-1)
- # Compute the log of the mixture distribution
- # log(a + b) = log(exp(log(a)) + exp(log(b))) -> for mixture
- beta = torch.tensor(beta, dtype=student_log_probs.dtype)
- mixture_log_probs = torch.logsumexp(
- torch.stack([student_log_probs + torch.log(beta), teacher_log_probs + torch.log(1 - beta)]),
- dim=0,
- )
- # Compute KL divergences using F.kl_div
- # PyTorch differs from the standard mathematical definition, so the order of the probability distributions is swapped compared to that defined in the paper.
- kl_teacher = F.kl_div(mixture_log_probs, teacher_log_probs, reduction="none", log_target=True)
- kl_student = F.kl_div(mixture_log_probs, student_log_probs, reduction="none", log_target=True)
- # Compute the Generalized Jensen-Shannon Divergence
- jsd = beta * kl_teacher + (1 - beta) * kl_student
- # Masking
- if labels is not None:
- mask = labels != -100
- jsd = jsd[mask]
- # Apply reduction
- if reduction == "batchmean":
- return jsd.sum() / mask.sum() if labels is not None else jsd.sum() / (jsd.size(0) * jsd.size(1))
- elif reduction == "sum":
- return jsd.sum()
- elif reduction == "mean":
- return jsd.mean()
- else:
- return jsd
- def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
- # compute student output
- outputs_student = model(
- input_ids=inputs["input_ids"],
- attention_mask=inputs["attention_mask"],
- )
- # compute teacher output in eval mode
- self.teacher_model.eval()
- with torch.no_grad():
- outputs_teacher = self.teacher_model(
- input_ids=inputs["input_ids"],
- attention_mask=inputs["attention_mask"],
- )
- # slice the logits for the generated tokens using the inputs["prompts"] lengths
- prompt_lengths = inputs["prompts"].shape[1]
- shifted_student_logits = outputs_student.logits[:, prompt_lengths - 1 : -1, :]
- shifted_teacher_logits = outputs_teacher.logits[:, prompt_lengths - 1 : -1, :]
- shifted_labels = inputs["labels"][:, prompt_lengths:]
- # compute loss
- loss = self.generalized_jsd_loss(
- student_logits=shifted_student_logits,
- teacher_logits=shifted_teacher_logits,
- labels=shifted_labels,
- beta=self.beta,
- )
- # empty cache
- empty_cache()
- # Return loss
- return (loss, outputs_student) if return_outputs else loss
- @staticmethod
- def generate_on_policy_outputs(model, inputs, generation_config, pad_token_id=None):
- # Generate output with respect to the prompt only
- generated_outputs = model.generate(
- input_ids=inputs["prompts"],
- attention_mask=inputs.get("prompt_attention_mask", None),
- generation_config=generation_config,
- return_dict_in_generate=True,
- )
- # Get the generated token IDs
- generated_tokens = generated_outputs.sequences
- # Calculate new attention mask
- new_attention_mask = torch.ones_like(generated_tokens)
- new_labels = generated_tokens.clone()
- # If there's pad_token_id, set attention mask to 0 for padding tokens
- if pad_token_id is not None:
- new_labels[new_labels == pad_token_id] = -100
- new_attention_mask[generated_tokens == pad_token_id] = 0
- return generated_tokens, new_attention_mask, new_labels
- def training_step(
- self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None
- ) -> torch.Tensor:
- """
- Perform a training step for the Generalized Knowledge Distillation (GKD) model.
- This method implements the on-policy learning approach described in the GKD paper.
- With probability `self.lmbda`, it generates new responses using the student model,
- which are then used for training instead of the original inputs.
- """
- if self.seq_kd:
- with unwrap_model_for_generation(self.teacher_model, self.accelerator) as unwrapped_model:
- new_input_ids, new_attention_mask, new_labels = self.generate_on_policy_outputs(
- unwrapped_model, inputs, self.generation_config, self.processing_class.pad_token_id
- )
- inputs["input_ids"] = new_input_ids
- inputs["attention_mask"] = new_attention_mask
- inputs["labels"] = new_labels
- if random.random() <= self.lmbda:
- with unwrap_model_for_generation(model, self.accelerator) as unwrapped_model:
- new_input_ids, new_attention_mask, new_labels = self.generate_on_policy_outputs(
- unwrapped_model, inputs, self.generation_config, self.processing_class.pad_token_id
- )
- inputs["input_ids"] = new_input_ids
- inputs["attention_mask"] = new_attention_mask
- inputs["labels"] = new_labels
- loss = super().training_step(model, inputs, num_items_in_batch)
- return loss
- def _prepare_deepspeed(self, model: PreTrainedModelWrapper):
- # Adapted from accelerate: https://github.com/huggingface/accelerate/blob/739b135f8367becb67ffaada12fe76e3aa60fefd/src/accelerate/accelerator.py#L1473
- deepspeed_plugin = self.accelerator.state.deepspeed_plugin
- config_kwargs = deepcopy(deepspeed_plugin.deepspeed_config)
- if model is not None:
- if hasattr(model, "config"):
- hidden_size = (
- max(model.config.hidden_sizes)
- if getattr(model.config, "hidden_sizes", None)
- else getattr(model.config, "hidden_size", None)
- )
- if hidden_size is not None and config_kwargs["zero_optimization"]["stage"] == 3:
- # Note that `stage3_prefetch_bucket_size` can produce DeepSpeed messages like: `Invalidate trace cache @ step 0: expected module 1, but got module 0`
- # This is expected and is not an error, see: https://github.com/microsoft/DeepSpeed/discussions/4081
- config_kwargs.update(
- {
- "zero_optimization.reduce_bucket_size": hidden_size * hidden_size,
- "zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size,
- "zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size,
- }
- )
- # If ZeRO-3 is used, we shard both the active and reference model.
- # Otherwise, we assume the reference model fits in memory and is initialized on each device with ZeRO disabled (stage 0)
- if config_kwargs["zero_optimization"]["stage"] != 3:
- config_kwargs["zero_optimization"]["stage"] = 0
- model, *_ = deepspeed.initialize(model=model, config=config_kwargs)
- model.eval()
- return model
- def create_model_card(
- self,
- model_name: Optional[str] = None,
- dataset_name: Optional[str] = None,
- tags: Union[str, list[str], None] = None,
- ):
- """
- Creates a draft of a model card using the information available to the `Trainer`.
- Args:
- model_name (`str` or `None`, *optional*, defaults to `None`):
- Name of the model.
- dataset_name (`str` or `None`, *optional*, defaults to `None`):
- Name of the dataset used for training.
- tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
- Tags to be associated with the model card.
- """
- if not self.is_world_process_zero():
- return
- if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
- base_model = self.model.config._name_or_path
- else:
- base_model = None
- tags = tags or []
- if isinstance(tags, str):
- tags = [tags]
- if hasattr(self.model.config, "unsloth_version"):
- tags.append("unsloth")
- citation = textwrap.dedent("""\
- @inproceedings{agarwal2024on-policy,
- title = {{On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes}},
- author = {Rishabh Agarwal and Nino Vieillard and Yongchao Zhou and Piotr Stanczyk and Sabela Ramos Garea and Matthieu Geist and Olivier Bachem},
- year = 2024,
- booktitle = {The Twelfth International Conference on Learning Representations, {ICLR} 2024, Vienna, Austria, May 7-11, 2024},
- publisher = {OpenReview.net},
- url = {https://openreview.net/forum?id=3zKtaqxLhW},
- }""")
- model_card = generate_model_card(
- base_model=base_model,
- model_name=model_name,
- hub_model_id=self.hub_model_id,
- dataset_name=dataset_name,
- tags=tags,
- wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
- comet_url=get_comet_experiment_url(),
- trainer_name="GKD",
- trainer_citation=citation,
- paper_title="On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes",
- paper_id="2306.13649",
- )
- model_card.save(os.path.join(self.args.output_dir, "README.md"))
- class UnslothGKDTrainer(_UnslothGKDTrainer):
- """
-
- """
- def __init__(
- self,
- model = None,
- teacher_model = None,
- args = None,
- data_collator = None,
- train_dataset = None,
- eval_dataset = None,
- processing_class = None,
- compute_metrics = None,
- callbacks = None,
- preprocess_logits_for_metrics = None,
- peft_config = None,
- formatting_func = None,
- **kwargs
- ):
- if args is None: args = UnslothGKDConfig()
- use_bf16 = getattr(args, 'bf16', False)
- use_fp16 = getattr(args, 'fp16', False)
- dtype = getattr(model.config, 'torch_dtype', None)
- if dtype is None: dtype = model.get_input_embeddings().dtype
- from unsloth_zoo.utils import _get_dtype
- dtype = _get_dtype(dtype)
- float16 = dtype == torch.float16
- if float16 and use_bf16: raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
- if not float16 and use_fp16: raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
- if not use_bf16 and not use_fp16:
- args.fp16 = float16
- args.bf16 = not float16
- os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
- if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
- args.eval_strategy = 'steps'
- if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
- ga_steps = getattr(args, 'gradient_accumulation_steps', None)
- if ga_steps is not None and ga_steps > 1:
- from transformers import __version__ as transformers_version
- if Version(transformers_version) <= Version('4.45.2'):
- print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
- '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
- if getattr(args, 'eval_strategy', 'no') != 'no':
- eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
- if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
- if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
- fp16_full_eval = getattr(args, 'fp16_full_eval', False)
- bf16_full_eval = getattr(args, 'bf16_full_eval', False)
- if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
- if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
- if not bf16_full_eval and not fp16_full_eval: args.bf16_full_eval = args.bf16; args.fp16_full_eval = args.fp16
- if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
- pass
- else:
- model_max_seq_length = getattr(model, 'max_seq_length', None)
- args_max_seq_length = getattr(args, 'max_seq_length', None)
- if args_max_seq_length is None and model_max_seq_length is not None:
- max_seq_length = model.max_seq_length
- if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
- if model is not None and hasattr(model, 'for_training'):
- model.for_training()
- if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
- if 'processing_class' in locals():
- if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
- if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
- other_metrics = []
-
- from unsloth_zoo.logging_utils import PatchRLStatistics
- PatchRLStatistics('gkd_trainer', other_metrics)
-
- super().__init__(
- model = model,
- teacher_model = teacher_model,
- args = args,
- data_collator = data_collator,
- train_dataset = train_dataset,
- eval_dataset = eval_dataset,
- processing_class = processing_class,
- compute_metrics = compute_metrics,
- callbacks = callbacks,
- preprocess_logits_for_metrics = preprocess_logits_for_metrics,
- peft_config = peft_config,
- formatting_func = formatting_func,**kwargs)
- if hasattr(self, 'neftune_hook_handle'):
- self.neftune_hook_handle.remove()
- if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
- if getattr(args, 'neftune_noise_alpha', None) is not None:
- model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
- pass
-
- pass
|