UnslothXPOTrainer.py 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967
  1. """
  2. 2025.3.3
  3. 2025.3.5
  4. 4.49.0
  5. 0.15.2
  6. __UNSLOTH_VERSIONING__
  7. """
  8. from torch import Tensor
  9. import torch
  10. import torch.nn as nn
  11. from torch.nn import functional as F
  12. from trl.trainer.xpo_trainer import (Any, BaseImageProcessor, BasePairwiseJudge, Callable, Dataset, EvalPrediction, F, FeatureExtractionMixin, IterableDataset, OnlineDPOTrainer, OptimizerNames, Optional, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SIMPLE_CHAT_TEMPLATE, TrainerCallback, Union, XPOConfig, XPOTrainer, empty_cache, generate_model_card, get_comet_experiment_url, get_reward, is_conversational, is_wandb_available, jinja2, maybe_apply_chat_template, nn, os, textwrap, torch, truncate_right, unwrap_model_for_generation)
  13. import os
  14. from typing import *
  15. from dataclasses import dataclass, field
  16. from packaging.version import Version
  17. import torch
  18. import numpy as np
  19. from contextlib import nullcontext
  20. from torch.nn import functional as F
  21. torch_compile_options = {
  22. "epilogue_fusion" : True,
  23. "max_autotune" : False,
  24. "shape_padding" : True,
  25. "trace.enabled" : False,
  26. "triton.cudagraphs" : False,
  27. }
  28. @torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
  29. def selective_log_softmax(logits, index):
  30. logits = logits.to(torch.float32)
  31. selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
  32. # loop to reduce peak mem consumption
  33. # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
  34. logsumexp_values = torch.logsumexp(logits, dim = -1)
  35. per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x)
  36. return per_token_logps
  37. @dataclass
  38. class UnslothXPOConfig(XPOConfig):
  39. """
  40. Configuration class for the [`XPOTrainer`].
  41. Subclass of [`OnlineDPOConfig`] we can use all its arguments and add the following:
  42. Parameters:
  43. alpha (`float` or `list[float]`, *optional*, defaults to `1e-5`):
  44. Weight of the XPO loss term. If a list of floats is provided then the alpha is selected for each new epoch
  45. and the last alpha is used for the rest of the epochs.
  46. """
  47. vllm_sampling_params: Optional[Any] = field(
  48. default = None,
  49. metadata = {'help': 'vLLM SamplingParams'},
  50. )
  51. unsloth_num_chunks : Optional[int] = field(
  52. default = -1,
  53. metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
  54. )
  55. def __init__(
  56. self,
  57. output_dir = None,
  58. overwrite_output_dir = None,
  59. do_train = False,
  60. do_eval = False,
  61. do_predict = False,
  62. eval_strategy = 'no',
  63. prediction_loss_only = False,
  64. per_device_train_batch_size = 4,
  65. per_device_eval_batch_size = 4,
  66. per_gpu_train_batch_size = None,
  67. per_gpu_eval_batch_size = None,
  68. gradient_accumulation_steps = 2,
  69. eval_accumulation_steps = 2,
  70. eval_delay = 0,
  71. torch_empty_cache_steps = 250,
  72. learning_rate = 5e-05,
  73. weight_decay = 0.01,
  74. adam_beta1 = 0.9,
  75. adam_beta2 = 0.999,
  76. adam_epsilon = 1e-08,
  77. max_grad_norm = 1.0,
  78. num_train_epochs = 3.0,
  79. max_steps = -1,
  80. lr_scheduler_type = 'linear',
  81. warmup_ratio = 0.1,
  82. warmup_steps = 0,
  83. log_level = 'passive',
  84. log_level_replica = 'warning',
  85. log_on_each_node = True,
  86. logging_dir = None,
  87. logging_strategy = 'steps',
  88. logging_first_step = False,
  89. logging_steps = 1,
  90. logging_nan_inf_filter = False,
  91. save_strategy = 'steps',
  92. save_steps = 500,
  93. save_total_limit = None,
  94. save_safetensors = True,
  95. save_on_each_node = False,
  96. save_only_model = False,
  97. restore_callback_states_from_checkpoint = False,
  98. no_cuda = False,
  99. use_cpu = False,
  100. use_mps_device = False,
  101. seed = 3407,
  102. data_seed = 3407,
  103. jit_mode_eval = False,
  104. use_ipex = False,
  105. bf16 = False,
  106. fp16 = False,
  107. fp16_opt_level = 'O1',
  108. half_precision_backend = 'auto',
  109. bf16_full_eval = False,
  110. fp16_full_eval = False,
  111. tf32 = None,
  112. local_rank = -1,
  113. ddp_backend = None,
  114. tpu_num_cores = None,
  115. tpu_metrics_debug = False,
  116. debug = '',
  117. dataloader_drop_last = False,
  118. eval_steps = None,
  119. dataloader_num_workers = 0,
  120. dataloader_prefetch_factor = None,
  121. past_index = -1,
  122. run_name = None,
  123. disable_tqdm = None,
  124. remove_unused_columns = True,
  125. label_names = None,
  126. load_best_model_at_end = False,
  127. metric_for_best_model = None,
  128. greater_is_better = None,
  129. ignore_data_skip = False,
  130. fsdp = '',
  131. fsdp_min_num_params = 0,
  132. fsdp_config = None,
  133. fsdp_transformer_layer_cls_to_wrap = None,
  134. accelerator_config = None,
  135. deepspeed = None,
  136. label_smoothing_factor = 0.0,
  137. optim = 'adamw_8bit',
  138. optim_args = None,
  139. adafactor = False,
  140. group_by_length = False,
  141. length_column_name = 'length',
  142. report_to = None,
  143. ddp_find_unused_parameters = None,
  144. ddp_bucket_cap_mb = None,
  145. ddp_broadcast_buffers = None,
  146. dataloader_pin_memory = True,
  147. dataloader_persistent_workers = False,
  148. skip_memory_metrics = True,
  149. use_legacy_prediction_loop = False,
  150. push_to_hub = False,
  151. resume_from_checkpoint = None,
  152. hub_model_id = None,
  153. hub_strategy = 'every_save',
  154. hub_token = None,
  155. hub_private_repo = None,
  156. hub_always_push = False,
  157. gradient_checkpointing = False,
  158. gradient_checkpointing_kwargs = None,
  159. include_inputs_for_metrics = False,
  160. eval_do_concat_batches = True,
  161. fp16_backend = 'auto',
  162. evaluation_strategy = None,
  163. push_to_hub_model_id = None,
  164. push_to_hub_organization = None,
  165. push_to_hub_token = None,
  166. mp_parameters = '',
  167. auto_find_batch_size = False,
  168. full_determinism = False,
  169. torchdynamo = None,
  170. ray_scope = 'last',
  171. ddp_timeout = 1800,
  172. torch_compile = False,
  173. torch_compile_backend = None,
  174. torch_compile_mode = None,
  175. dispatch_batches = None,
  176. split_batches = None,
  177. include_tokens_per_second = False,
  178. include_num_input_tokens_seen = False,
  179. neftune_noise_alpha = None,
  180. optim_target_modules = None,
  181. batch_eval_metrics = False,
  182. eval_on_start = False,
  183. use_liger_kernel = False,
  184. eval_use_gather_object = False,
  185. average_tokens_across_devices = False,
  186. reward_model_path = None,
  187. judge = None,
  188. max_new_tokens = 64,
  189. max_length = 512,
  190. temperature = 0.9,
  191. missing_eos_penalty = None,
  192. loss_type = 'sigmoid',
  193. dataset_num_proc = None,
  194. disable_dropout = True,
  195. use_vllm = False,
  196. ds3_gather_for_generation = True,
  197. vllm_sampling_params = None,
  198. unsloth_num_chunks = -1,
  199. **kwargs,
  200. ):
  201. if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
  202. if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
  203. if output_dir is None and save_strategy == 'steps' and save_steps == 500:
  204. output_dir = 'unsloth_training_checkpoints'
  205. save_strategy = 'no'
  206. if dataset_num_proc is None:
  207. from multiprocessing import cpu_count
  208. dataset_num_proc = cpu_count()
  209. super().__init__(
  210. output_dir = output_dir,
  211. overwrite_output_dir = overwrite_output_dir,
  212. do_train = do_train,
  213. do_eval = do_eval,
  214. do_predict = do_predict,
  215. eval_strategy = eval_strategy,
  216. prediction_loss_only = prediction_loss_only,
  217. per_device_train_batch_size = per_device_train_batch_size,
  218. per_device_eval_batch_size = per_device_eval_batch_size,
  219. per_gpu_train_batch_size = per_gpu_train_batch_size,
  220. per_gpu_eval_batch_size = per_gpu_eval_batch_size,
  221. gradient_accumulation_steps = gradient_accumulation_steps,
  222. eval_accumulation_steps = eval_accumulation_steps,
  223. eval_delay = eval_delay,
  224. torch_empty_cache_steps = torch_empty_cache_steps,
  225. learning_rate = learning_rate,
  226. weight_decay = weight_decay,
  227. adam_beta1 = adam_beta1,
  228. adam_beta2 = adam_beta2,
  229. adam_epsilon = adam_epsilon,
  230. max_grad_norm = max_grad_norm,
  231. num_train_epochs = num_train_epochs,
  232. max_steps = max_steps,
  233. lr_scheduler_type = lr_scheduler_type,
  234. warmup_ratio = warmup_ratio,
  235. warmup_steps = warmup_steps,
  236. log_level = log_level,
  237. log_level_replica = log_level_replica,
  238. log_on_each_node = log_on_each_node,
  239. logging_dir = logging_dir,
  240. logging_strategy = logging_strategy,
  241. logging_first_step = logging_first_step,
  242. logging_steps = logging_steps,
  243. logging_nan_inf_filter = logging_nan_inf_filter,
  244. save_strategy = save_strategy,
  245. save_steps = save_steps,
  246. save_total_limit = save_total_limit,
  247. save_safetensors = save_safetensors,
  248. save_on_each_node = save_on_each_node,
  249. save_only_model = save_only_model,
  250. restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
  251. no_cuda = no_cuda,
  252. use_cpu = use_cpu,
  253. use_mps_device = use_mps_device,
  254. seed = seed,
  255. data_seed = data_seed,
  256. jit_mode_eval = jit_mode_eval,
  257. use_ipex = use_ipex,
  258. bf16 = bf16,
  259. fp16 = fp16,
  260. fp16_opt_level = fp16_opt_level,
  261. half_precision_backend = half_precision_backend,
  262. bf16_full_eval = bf16_full_eval,
  263. fp16_full_eval = fp16_full_eval,
  264. tf32 = tf32,
  265. local_rank = local_rank,
  266. ddp_backend = ddp_backend,
  267. tpu_num_cores = tpu_num_cores,
  268. tpu_metrics_debug = tpu_metrics_debug,
  269. debug = debug,
  270. dataloader_drop_last = dataloader_drop_last,
  271. eval_steps = eval_steps,
  272. dataloader_num_workers = dataloader_num_workers,
  273. dataloader_prefetch_factor = dataloader_prefetch_factor,
  274. past_index = past_index,
  275. run_name = run_name,
  276. disable_tqdm = disable_tqdm,
  277. remove_unused_columns = remove_unused_columns,
  278. label_names = label_names,
  279. load_best_model_at_end = load_best_model_at_end,
  280. metric_for_best_model = metric_for_best_model,
  281. greater_is_better = greater_is_better,
  282. ignore_data_skip = ignore_data_skip,
  283. fsdp = fsdp,
  284. fsdp_min_num_params = fsdp_min_num_params,
  285. fsdp_config = fsdp_config,
  286. fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
  287. accelerator_config = accelerator_config,
  288. deepspeed = deepspeed,
  289. label_smoothing_factor = label_smoothing_factor,
  290. optim = optim,
  291. optim_args = optim_args,
  292. adafactor = adafactor,
  293. group_by_length = group_by_length,
  294. length_column_name = length_column_name,
  295. report_to = report_to,
  296. ddp_find_unused_parameters = ddp_find_unused_parameters,
  297. ddp_bucket_cap_mb = ddp_bucket_cap_mb,
  298. ddp_broadcast_buffers = ddp_broadcast_buffers,
  299. dataloader_pin_memory = dataloader_pin_memory,
  300. dataloader_persistent_workers = dataloader_persistent_workers,
  301. skip_memory_metrics = skip_memory_metrics,
  302. use_legacy_prediction_loop = use_legacy_prediction_loop,
  303. push_to_hub = push_to_hub,
  304. resume_from_checkpoint = resume_from_checkpoint,
  305. hub_model_id = hub_model_id,
  306. hub_strategy = hub_strategy,
  307. hub_token = hub_token,
  308. hub_private_repo = hub_private_repo,
  309. hub_always_push = hub_always_push,
  310. gradient_checkpointing = gradient_checkpointing,
  311. gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
  312. include_inputs_for_metrics = include_inputs_for_metrics,
  313. eval_do_concat_batches = eval_do_concat_batches,
  314. fp16_backend = fp16_backend,
  315. evaluation_strategy = evaluation_strategy,
  316. push_to_hub_model_id = push_to_hub_model_id,
  317. push_to_hub_organization = push_to_hub_organization,
  318. push_to_hub_token = push_to_hub_token,
  319. mp_parameters = mp_parameters,
  320. auto_find_batch_size = auto_find_batch_size,
  321. full_determinism = full_determinism,
  322. torchdynamo = torchdynamo,
  323. ray_scope = ray_scope,
  324. ddp_timeout = ddp_timeout,
  325. torch_compile = torch_compile,
  326. torch_compile_backend = torch_compile_backend,
  327. torch_compile_mode = torch_compile_mode,
  328. dispatch_batches = dispatch_batches,
  329. split_batches = split_batches,
  330. include_tokens_per_second = include_tokens_per_second,
  331. include_num_input_tokens_seen = include_num_input_tokens_seen,
  332. neftune_noise_alpha = neftune_noise_alpha,
  333. optim_target_modules = optim_target_modules,
  334. batch_eval_metrics = batch_eval_metrics,
  335. eval_on_start = eval_on_start,
  336. use_liger_kernel = use_liger_kernel,
  337. eval_use_gather_object = eval_use_gather_object,
  338. average_tokens_across_devices = average_tokens_across_devices,
  339. reward_model_path = reward_model_path,
  340. judge = judge,
  341. max_new_tokens = max_new_tokens,
  342. max_length = max_length,
  343. temperature = temperature,
  344. missing_eos_penalty = missing_eos_penalty,
  345. loss_type = loss_type,
  346. dataset_num_proc = dataset_num_proc,
  347. disable_dropout = disable_dropout,
  348. use_vllm = use_vllm,
  349. ds3_gather_for_generation = ds3_gather_for_generation,**kwargs)
  350. self.vllm_sampling_params = vllm_sampling_params
  351. self.unsloth_num_chunks = unsloth_num_chunks
  352. pass
  353. class _UnslothXPOTrainer(OnlineDPOTrainer):
  354. r""""""
  355. _tag_names = ["trl", "xpo"]
  356. def __init__(
  357. self,
  358. model: Union[PreTrainedModel, nn.Module] = None,
  359. ref_model: Union[PreTrainedModel, nn.Module] = None,
  360. reward_model: Optional[nn.Module] = None,
  361. judge: Optional[BasePairwiseJudge] = None,
  362. args: Optional[XPOConfig] = None,
  363. data_collator: Optional[Callable] = None,
  364. train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
  365. eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
  366. processing_class: Optional[
  367. Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
  368. ] = None,
  369. peft_config: Optional[dict] = None,
  370. compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
  371. callbacks: Optional[list[TrainerCallback]] = None,
  372. optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
  373. preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
  374. ) -> None:
  375. super().__init__(
  376. model=model,
  377. ref_model=ref_model,
  378. judge=judge,
  379. reward_model=reward_model,
  380. args=args,
  381. data_collator=data_collator,
  382. train_dataset=train_dataset,
  383. eval_dataset=eval_dataset,
  384. processing_class=processing_class,
  385. reward_processing_class=processing_class, # for now, XPOTrainer can't use any reward model
  386. peft_config=peft_config,
  387. compute_metrics=compute_metrics,
  388. callbacks=callbacks,
  389. optimizers=optimizers,
  390. preprocess_logits_for_metrics=preprocess_logits_for_metrics,
  391. )
  392. self._alpha = self.args.alpha
  393. # Overwrite the stats dictionary to include XPO specific statistics
  394. self.stats = {
  395. # Remove "non_score_reward", "rlhf_reward", "scores"
  396. # Add "loss/dpo", "loss/xpo"
  397. "loss/dpo": [],
  398. "loss/xpo": [],
  399. "objective/kl": [],
  400. "objective/entropy": [],
  401. "rewards/chosen": [],
  402. "rewards/rejected": [],
  403. "rewards/accuracies": [],
  404. "rewards/margins": [],
  405. "logps/chosen": [],
  406. "logps/rejected": [],
  407. # Replace "contain_eos_token" by "model_contain_eos_token" and "ref_contain_eos_token"
  408. "val/model_contain_eos_token": [],
  409. "val/ref_contain_eos_token": [],
  410. "alpha": [],
  411. "beta": [],
  412. }
  413. if self.reward_model is not None:
  414. # Replace "scores" by "model_scores" and "ref_scores"
  415. self.stats["objective/model_scores"] = []
  416. self.stats["objective/ref_scores"] = []
  417. self.stats["objective/scores_margin"] = []
  418. @property
  419. def alpha(self):
  420. if isinstance(self._alpha, list):
  421. epoch = self.state.epoch
  422. return self._alpha[epoch] if epoch < len(self._alpha) else self._alpha[-1]
  423. else:
  424. return self._alpha
  425. def _generate_completions(self, prompts, model):
  426. with unwrap_model_for_generation(model, self.accelerator) as unwrapped_model:
  427. model_output = unwrapped_model.generate(
  428. input_ids=prompts["input_ids"],
  429. attention_mask=prompts["attention_mask"],
  430. generation_config=self.generation_config,
  431. )
  432. ref_model = model if self.ref_model is None else self.ref_model
  433. with torch.no_grad(), unwrap_model_for_generation(ref_model, self.accelerator) as unwrapped_ref_model:
  434. ref_output = unwrapped_ref_model.generate(
  435. input_ids=prompts["input_ids"],
  436. attention_mask=prompts["attention_mask"],
  437. generation_config=self.generation_config,
  438. )
  439. return model_output, ref_output
  440. def _process_completions(self, model_output, ref_output, prompts):
  441. context_length = prompts["input_ids"].shape[1]
  442. # Process model completions
  443. model_completion_ids = model_output[:, context_length:]
  444. model_completion_ids, model_completion_mask = truncate_right(
  445. model_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id
  446. )
  447. model_data = {
  448. "input_ids": torch.cat((prompts["input_ids"], model_completion_ids), dim=1),
  449. "attention_mask": torch.cat((prompts["attention_mask"], model_completion_mask), dim=1),
  450. "raw": prompts["raw"],
  451. }
  452. # Process reference model completions
  453. ref_completion_ids = ref_output[:, context_length:]
  454. ref_completion_ids, ref_completion_mask = truncate_right(
  455. ref_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id
  456. )
  457. ref_data = {
  458. "input_ids": torch.cat((prompts["input_ids"], ref_completion_ids), dim=1),
  459. "attention_mask": torch.cat((prompts["attention_mask"], ref_completion_mask), dim=1),
  460. "raw": prompts["raw"],
  461. }
  462. return model_data, ref_data
  463. def _compute_rewards(self, model_data, ref_data, context_length):
  464. with torch.no_grad():
  465. _, model_scores, _ = get_reward(
  466. self.reward_model, model_data["input_ids"], self.processing_class.pad_token_id, context_length
  467. )
  468. _, ref_scores, _ = get_reward(
  469. self.reward_model, ref_data["input_ids"], self.processing_class.pad_token_id, context_length
  470. )
  471. # Apply EOS penalty if needed
  472. if self.args.missing_eos_penalty is not None:
  473. model_contain_eos = torch.any(model_data["input_ids"] == self.processing_class.eos_token_id, dim=-1)
  474. ref_contain_eos = torch.any(ref_data["input_ids"] == self.processing_class.eos_token_id, dim=-1)
  475. model_scores[~model_contain_eos] -= self.args.missing_eos_penalty
  476. ref_scores[~ref_contain_eos] -= self.args.missing_eos_penalty
  477. return model_scores, ref_scores
  478. def _compute_judge(self, model_data, ref_data, context_length):
  479. prompts = model_data["raw"]
  480. model_data_completions = self.processing_class.batch_decode(
  481. model_data["input_ids"][:, context_length:], skip_special_tokens=True
  482. )
  483. model_data_completions = [completion.strip() for completion in model_data_completions]
  484. ref_data_completions = self.processing_class.batch_decode(
  485. ref_data["input_ids"][:, context_length:], skip_special_tokens=True
  486. )
  487. ref_data_completions = [completion.strip() for completion in ref_data_completions]
  488. if is_conversational({"prompt": prompts[0]}):
  489. model_data_completions = [
  490. [{"role": "assistant", "content": completion}] for completion in model_data_completions
  491. ]
  492. environment = jinja2.Environment()
  493. template = environment.from_string(SIMPLE_CHAT_TEMPLATE)
  494. prompts = [template.render(messages=message) for message in prompts]
  495. model_data_completions = [template.render(messages=completion) for completion in model_data_completions]
  496. ref_data_completions = [
  497. [{"role": "assistant", "content": completion}] for completion in ref_data_completions
  498. ]
  499. ref_data_completions = [template.render(messages=completion) for completion in ref_data_completions]
  500. ranks_of_first_completion = self.judge.judge(
  501. prompts,
  502. list(zip(model_data_completions, ref_data_completions)),
  503. )
  504. # convert ranks to a True/False mask:
  505. # when rank == 0, it means the first completion is the best
  506. # when rank == 1, it means the second completion is the best
  507. return torch.tensor([rank == 0 for rank in ranks_of_first_completion], device=model_data["input_ids"].device)
  508. def _compute_logprobs(self, model, model_data, ref_data, context_length):
  509. def compute_logprobs_for_data(m, data):
  510. output = m(data["input_ids"], attention_mask=data["attention_mask"])
  511. logits = output.logits[:, context_length - 1 : -1]
  512. token_logprobs = selective_log_softmax(logits, data["input_ids"][:, context_length:])
  513. return token_logprobs
  514. # Compute logprobs for model completions
  515. model_logprobs_model_data = compute_logprobs_for_data(model, model_data)
  516. # Compute logprobs for model on reference completions (for XPO loss)
  517. model_logprobs_ref_data = compute_logprobs_for_data(model, ref_data)
  518. # Compute logprobs for reference model completions
  519. with torch.no_grad():
  520. if self.ref_model is None:
  521. with model.disable_adapter():
  522. ref_logprobs_model_data = compute_logprobs_for_data(model, model_data)
  523. ref_logprobs_ref_data = compute_logprobs_for_data(model, ref_data)
  524. else:
  525. ref_logprobs_model_data = compute_logprobs_for_data(self.ref_model, model_data)
  526. ref_logprobs_ref_data = compute_logprobs_for_data(self.ref_model, ref_data)
  527. # Mask padding tokens
  528. model_padding_mask = model_data["attention_mask"][:, context_length:] == 0
  529. ref_padding_mask = ref_data["attention_mask"][:, context_length:] == 0
  530. model_logprobs_model_data = model_logprobs_model_data.masked_fill(model_padding_mask, 0.0)
  531. model_logprobs_ref_data = model_logprobs_ref_data.masked_fill(ref_padding_mask, 0.0)
  532. ref_logprobs_ref_data = ref_logprobs_ref_data.masked_fill(ref_padding_mask, 0.0)
  533. ref_logprobs_model_data = ref_logprobs_model_data.masked_fill(model_padding_mask, 0.0)
  534. return model_logprobs_model_data, model_logprobs_ref_data, ref_logprobs_ref_data, ref_logprobs_model_data
  535. def _compute_losses(
  536. self,
  537. model_logprobs_model_data,
  538. model_logprobs_ref_data,
  539. ref_logprobs_ref_data,
  540. ref_logprobs_model_data,
  541. chosen_mask,
  542. ):
  543. # Compute log probs
  544. model_logprobs_model_data_sum = model_logprobs_model_data.sum(1)
  545. model_logprobs_ref_data_sum = model_logprobs_ref_data.sum(1)
  546. ref_logprobs_ref_data_sum = ref_logprobs_ref_data.sum(1)
  547. ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1)
  548. chosen_model_logprobs = torch.where(chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
  549. chosen_ref_logprobs = torch.where(chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
  550. chosen_log_ratios = chosen_model_logprobs - chosen_ref_logprobs
  551. rejected_model_logprobs = torch.where(~chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
  552. rejected_ref_logprobs = torch.where(~chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
  553. rejected_log_ratios = rejected_model_logprobs - rejected_ref_logprobs
  554. # Compute logits as the difference between chosen and rejected log ratios
  555. logits = chosen_log_ratios - rejected_log_ratios
  556. if self.args.loss_type == "sigmoid":
  557. dpo_losses = -F.logsigmoid(self.beta * logits)
  558. elif self.args.loss_type == "ipo":
  559. dpo_losses = (logits - 1 / (2 * self.beta)) ** 2
  560. else:
  561. raise NotImplementedError(f"invalid loss type {self.args.loss_type}")
  562. # Compute XPO specific loss
  563. xpo_losses = self.alpha * model_logprobs_ref_data_sum
  564. # Total loss
  565. loss = (dpo_losses + xpo_losses).mean()
  566. return loss, dpo_losses, xpo_losses
  567. def _log_statistics(
  568. self,
  569. model_data,
  570. ref_data,
  571. model_logprobs_model_data,
  572. model_logprobs_ref_data,
  573. ref_logprobs_ref_data,
  574. ref_logprobs_model_data,
  575. chosen_mask,
  576. dpo_losses,
  577. xpo_losses,
  578. context_length,
  579. model_scores=None,
  580. ref_scores=None,
  581. ):
  582. # Helper function to gather and compute mean
  583. def gather_mean(tensor):
  584. return self.accelerator.gather_for_metrics(tensor).mean().item()
  585. # Log losses
  586. self.stats["loss/dpo"].append(gather_mean(dpo_losses))
  587. self.stats["loss/xpo"].append(gather_mean(xpo_losses))
  588. # Log scores
  589. if self.reward_model is not None:
  590. self.stats["objective/model_scores"].append(gather_mean(model_scores))
  591. self.stats["objective/ref_scores"].append(gather_mean(ref_scores))
  592. self.stats["objective/scores_margin"].append(gather_mean(model_scores - ref_scores))
  593. # Log logprobs
  594. model_logprobs_model_data_sum = model_logprobs_model_data.sum(1)
  595. model_logprobs_ref_data_sum = model_logprobs_ref_data.sum(1)
  596. ref_logprobs_ref_data_sum = ref_logprobs_ref_data.sum(1)
  597. ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1)
  598. chosen_model_logprobs = torch.where(chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
  599. chosen_ref_logprobs = torch.where(chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
  600. chosen_log_ratios = chosen_model_logprobs - chosen_ref_logprobs
  601. rejected_model_logprobs = torch.where(~chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
  602. rejected_ref_logprobs = torch.where(~chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
  603. rejected_log_ratios = rejected_model_logprobs - rejected_ref_logprobs
  604. self.stats["logps/chosen"].append(gather_mean(chosen_model_logprobs.mean() + chosen_ref_logprobs.mean()))
  605. self.stats["logps/rejected"].append(gather_mean(rejected_model_logprobs.mean() + rejected_ref_logprobs.mean()))
  606. # Log rewards
  607. # Compute various statistics
  608. chosen_rewards = chosen_log_ratios * self.beta
  609. rejected_rewards = rejected_log_ratios * self.beta
  610. self.stats["rewards/chosen"].append(gather_mean(chosen_rewards.mean()))
  611. self.stats["rewards/rejected"].append(gather_mean(rejected_rewards.mean()))
  612. # Calculate KL divergence for model and ref data
  613. kl_model_data = model_logprobs_model_data - ref_logprobs_model_data
  614. kl_ref_data = model_logprobs_ref_data - ref_logprobs_ref_data
  615. mean_kl = (kl_model_data.sum(1) + kl_ref_data.sum(1)).mean() / 2
  616. self.stats["objective/kl"].append(gather_mean(mean_kl))
  617. # Calculate entropy for model and ref data
  618. entropy_model_data = -model_logprobs_model_data.sum(1)
  619. entropy_ref_data = -model_logprobs_ref_data.sum(1)
  620. mean_entropy = (entropy_model_data.mean() + entropy_ref_data.mean()) / 2
  621. self.stats["objective/entropy"].append(gather_mean(mean_entropy))
  622. # Calculate margins
  623. margin = chosen_rewards - rejected_rewards
  624. self.stats["rewards/margins"].append(gather_mean(margin.mean()))
  625. # Calculate accuracy
  626. accuracy = (margin > 0).float()
  627. self.stats["rewards/accuracies"].append(gather_mean(accuracy.mean()))
  628. # Log EOS token statistics
  629. model_eos = (model_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1)
  630. ref_eos = (ref_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1)
  631. self.stats["val/model_contain_eos_token"].append(gather_mean(model_eos.float()))
  632. self.stats["val/ref_contain_eos_token"].append(gather_mean(ref_eos.float()))
  633. # Log alpha and beta
  634. self.stats["alpha"].append(self.alpha)
  635. self.stats["beta"].append(self.beta)
  636. def training_step(
  637. self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None
  638. ) -> torch.Tensor:
  639. model.train()
  640. # Apply chat template and tokenize the input
  641. batch_size = len(next(iter(inputs.values())))
  642. prompts = inputs["prompt"]
  643. inputs = [{k: v[i] for k, v in inputs.items()} for i in range(batch_size)]
  644. inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs]
  645. inputs = [self.tokenize_row(x, self.model.config.is_encoder_decoder, self.processing_class) for x in inputs]
  646. inputs = self.data_collator(inputs)
  647. # need the prompt_ only
  648. inputs = self._prepare_inputs(inputs)
  649. context_length = inputs["prompt_input_ids"].shape[1]
  650. prompts = {
  651. "input_ids": inputs["prompt_input_ids"],
  652. "attention_mask": inputs["prompt_attention_mask"],
  653. "raw": prompts,
  654. }
  655. del inputs
  656. # Sample completions from both the model and the reference model
  657. model_output, ref_output = self._generate_completions(prompts, model)
  658. # Process model completions
  659. model_data, ref_data = self._process_completions(model_output, ref_output, prompts)
  660. # Compute rewards
  661. if self.reward_model is not None:
  662. model_scores, ref_scores = self._compute_rewards(model_data, ref_data, context_length)
  663. chosen_mask = model_scores >= ref_scores
  664. else:
  665. model_scores, ref_scores = None, None
  666. chosen_mask = self._compute_judge(model_data, ref_data, context_length)
  667. # Compute logprobs
  668. model_logprobs_model_data, model_logprobs_ref_data, ref_logprobs_ref_data, ref_logprobs_model_data = (
  669. self._compute_logprobs(model, model_data, ref_data, context_length)
  670. )
  671. # Compute loss
  672. loss, dpo_losses, xpo_losses = self._compute_losses(
  673. model_logprobs_model_data,
  674. model_logprobs_ref_data,
  675. ref_logprobs_ref_data,
  676. ref_logprobs_model_data,
  677. chosen_mask,
  678. )
  679. # Log everything
  680. self._log_statistics(
  681. model_data,
  682. ref_data,
  683. model_logprobs_model_data.detach(),
  684. model_logprobs_ref_data.detach(),
  685. ref_logprobs_ref_data,
  686. ref_logprobs_model_data,
  687. chosen_mask,
  688. dpo_losses.detach(),
  689. xpo_losses.detach(),
  690. context_length,
  691. model_scores,
  692. ref_scores,
  693. )
  694. if (
  695. self.args.torch_empty_cache_steps is not None
  696. and self.state.global_step % self.args.torch_empty_cache_steps == 0
  697. ):
  698. empty_cache()
  699. kwargs = {}
  700. # For LOMO optimizers you need to explicitly use the learning rate
  701. if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]:
  702. kwargs["learning_rate"] = self._get_learning_rate()
  703. if self.args.n_gpu > 1:
  704. loss = loss.mean() # mean() to average on multi-gpu parallel training
  705. if self.use_apex:
  706. with amp.scale_loss(loss, self.optimizer) as scaled_loss:
  707. scaled_loss.backward()
  708. else:
  709. self.accelerator.backward(loss, **kwargs)
  710. return loss.detach() / self.args.gradient_accumulation_steps
  711. def create_model_card(
  712. self,
  713. model_name: Optional[str] = None,
  714. dataset_name: Optional[str] = None,
  715. tags: Union[str, list[str], None] = None,
  716. ):
  717. """
  718. Creates a draft of a model card using the information available to the `Trainer`.
  719. Args:
  720. model_name (`str` or `None`, *optional*, defaults to `None`):
  721. Name of the model.
  722. dataset_name (`str` or `None`, *optional*, defaults to `None`):
  723. Name of the dataset used for training.
  724. tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
  725. Tags to be associated with the model card.
  726. """
  727. if not self.is_world_process_zero():
  728. return
  729. if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
  730. base_model = self.model.config._name_or_path
  731. else:
  732. base_model = None
  733. tags = tags or []
  734. if isinstance(tags, str):
  735. tags = [tags]
  736. if hasattr(self.model.config, "unsloth_version"):
  737. tags.append("unsloth")
  738. citation = textwrap.dedent("""\
  739. @article{jung2024binary,
  740. title = {{Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF}},
  741. author = {Tengyang Xie and Dylan J. Foster and Akshay Krishnamurthy and Corby Rosset and Ahmed Awadallah and Alexander Rakhlin},
  742. year = 2024,
  743. eprint = {arXiv:2405.21046}
  744. }""")
  745. model_card = generate_model_card(
  746. base_model=base_model,
  747. model_name=model_name,
  748. hub_model_id=self.hub_model_id,
  749. dataset_name=dataset_name,
  750. tags=tags,
  751. wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
  752. comet_url=get_comet_experiment_url(),
  753. trainer_name="XPO",
  754. trainer_citation=citation,
  755. paper_title="Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF",
  756. paper_id="2405.21046",
  757. )
  758. model_card.save(os.path.join(self.args.output_dir, "README.md"))
  759. class UnslothXPOTrainer(_UnslothXPOTrainer):
  760. """
  761. Initialize XPOTrainer as a subclass of [`OnlineDPOConfig`].
  762. Args:
  763. model (`transformers.PreTrainedModel`):
  764. The model to train, preferably an `AutoModelForCausalLM`.
  765. ref_model (`PreTrainedModelWrapper`):
  766. Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no
  767. reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized.
  768. reward_model (`transformers.PreTrainedModel`):
  769. The reward model to score completions with, preferably an `AutoModelForSequenceClassification`.
  770. judge (`BasePairwiseJudge`):
  771. The judge to use for pairwise comparison of model completions.
  772. args (`XPOConfig`):
  773. The XPO config arguments to use for training.
  774. data_collator (`transformers.DataCollator`):
  775. The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used
  776. which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences.
  777. train_dataset (`datasets.Dataset`):
  778. The dataset to use for training.
  779. eval_dataset (`datasets.Dataset`):
  780. The dataset to use for evaluation.
  781. processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*):
  782. Processing class used to process the data. If provided, will be used to automatically process the inputs
  783. for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
  784. reuse the fine-tuned model.
  785. peft_config (`dict`):
  786. The peft config to use for training.
  787. compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
  788. The function to use to compute the metrics. Must take a `EvalPrediction` and return
  789. a dictionary string to metric values.
  790. callbacks (`list[transformers.TrainerCallback]`):
  791. The callbacks to use for training.
  792. optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
  793. The optimizer and scheduler to use for training.
  794. preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
  795. The function to use to preprocess the logits before computing the metrics.
  796. """
  797. def __init__(
  798. self,
  799. model = None,
  800. ref_model = None,
  801. reward_model = None,
  802. judge = None,
  803. args = None,
  804. data_collator = None,
  805. train_dataset = None,
  806. eval_dataset = None,
  807. processing_class = None,
  808. peft_config = None,
  809. compute_metrics = None,
  810. callbacks = None,
  811. preprocess_logits_for_metrics = None,
  812. **kwargs
  813. ):
  814. if args is None: args = UnslothXPOConfig()
  815. use_bf16 = getattr(args, 'bf16', False)
  816. use_fp16 = getattr(args, 'fp16', False)
  817. dtype = getattr(model.config, 'torch_dtype', None)
  818. if dtype is None: dtype = model.get_input_embeddings().dtype
  819. from unsloth_zoo.utils import _get_dtype
  820. dtype = _get_dtype(dtype)
  821. float16 = dtype == torch.float16
  822. if float16 and use_bf16: raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
  823. if not float16 and use_fp16: raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
  824. if not use_bf16 and not use_fp16:
  825. args.fp16 = float16
  826. args.bf16 = not float16
  827. os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
  828. if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
  829. args.eval_strategy = 'steps'
  830. if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
  831. ga_steps = getattr(args, 'gradient_accumulation_steps', None)
  832. if ga_steps is not None and ga_steps > 1:
  833. from transformers import __version__ as transformers_version
  834. if Version(transformers_version) <= Version('4.45.2'):
  835. print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
  836. '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
  837. if getattr(args, 'eval_strategy', 'no') != 'no':
  838. eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
  839. if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
  840. if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
  841. fp16_full_eval = getattr(args, 'fp16_full_eval', False)
  842. bf16_full_eval = getattr(args, 'bf16_full_eval', False)
  843. if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
  844. if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
  845. if not bf16_full_eval and not fp16_full_eval: args.bf16_full_eval = args.bf16; args.fp16_full_eval = args.fp16
  846. if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
  847. pass
  848. else:
  849. model_max_seq_length = getattr(model, 'max_seq_length', None)
  850. args_max_seq_length = getattr(args, 'max_seq_length', None)
  851. if args_max_seq_length is None and model_max_seq_length is not None:
  852. max_seq_length = model.max_seq_length
  853. if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
  854. if model is not None and hasattr(model, 'for_training'):
  855. model.for_training()
  856. if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
  857. if 'processing_class' in locals():
  858. if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
  859. if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
  860. other_metrics = []
  861. from unsloth_zoo.logging_utils import PatchRLStatistics
  862. PatchRLStatistics('xpo_trainer', other_metrics)
  863. super().__init__(
  864. model = model,
  865. ref_model = ref_model,
  866. reward_model = reward_model,
  867. judge = judge,
  868. args = args,
  869. data_collator = data_collator,
  870. train_dataset = train_dataset,
  871. eval_dataset = eval_dataset,
  872. processing_class = processing_class,
  873. peft_config = peft_config,
  874. compute_metrics = compute_metrics,
  875. callbacks = callbacks,
  876. preprocess_logits_for_metrics = preprocess_logits_for_metrics,**kwargs)
  877. if hasattr(self, 'neftune_hook_handle'):
  878. self.neftune_hook_handle.remove()
  879. if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
  880. if getattr(args, 'neftune_noise_alpha', None) is not None:
  881. model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
  882. pass
  883. pass