| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967 |
- """
- 2025.3.3
- 2025.3.5
- 4.49.0
- 0.15.2
- __UNSLOTH_VERSIONING__
- """
- from torch import Tensor
- import torch
- import torch.nn as nn
- from torch.nn import functional as F
- from trl.trainer.xpo_trainer import (Any, BaseImageProcessor, BasePairwiseJudge, Callable, Dataset, EvalPrediction, F, FeatureExtractionMixin, IterableDataset, OnlineDPOTrainer, OptimizerNames, Optional, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SIMPLE_CHAT_TEMPLATE, TrainerCallback, Union, XPOConfig, XPOTrainer, empty_cache, generate_model_card, get_comet_experiment_url, get_reward, is_conversational, is_wandb_available, jinja2, maybe_apply_chat_template, nn, os, textwrap, torch, truncate_right, unwrap_model_for_generation)
- import os
- from typing import *
- from dataclasses import dataclass, field
- from packaging.version import Version
- import torch
- import numpy as np
- from contextlib import nullcontext
- from torch.nn import functional as F
- torch_compile_options = {
- "epilogue_fusion" : True,
- "max_autotune" : False,
- "shape_padding" : True,
- "trace.enabled" : False,
- "triton.cudagraphs" : False,
- }
- @torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
- def selective_log_softmax(logits, index):
- logits = logits.to(torch.float32)
- selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
- # loop to reduce peak mem consumption
- # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
- logsumexp_values = torch.logsumexp(logits, dim = -1)
- per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x)
- return per_token_logps
- @dataclass
- class UnslothXPOConfig(XPOConfig):
- """
-
- Configuration class for the [`XPOTrainer`].
- Subclass of [`OnlineDPOConfig`] we can use all its arguments and add the following:
- Parameters:
- alpha (`float` or `list[float]`, *optional*, defaults to `1e-5`):
- Weight of the XPO loss term. If a list of floats is provided then the alpha is selected for each new epoch
- and the last alpha is used for the rest of the epochs.
-
- """
- vllm_sampling_params: Optional[Any] = field(
- default = None,
- metadata = {'help': 'vLLM SamplingParams'},
- )
- unsloth_num_chunks : Optional[int] = field(
- default = -1,
- metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
- )
- def __init__(
- self,
- output_dir = None,
- overwrite_output_dir = None,
- do_train = False,
- do_eval = False,
- do_predict = False,
- eval_strategy = 'no',
- prediction_loss_only = False,
- per_device_train_batch_size = 4,
- per_device_eval_batch_size = 4,
- per_gpu_train_batch_size = None,
- per_gpu_eval_batch_size = None,
- gradient_accumulation_steps = 2,
- eval_accumulation_steps = 2,
- eval_delay = 0,
- torch_empty_cache_steps = 250,
- learning_rate = 5e-05,
- weight_decay = 0.01,
- adam_beta1 = 0.9,
- adam_beta2 = 0.999,
- adam_epsilon = 1e-08,
- max_grad_norm = 1.0,
- num_train_epochs = 3.0,
- max_steps = -1,
- lr_scheduler_type = 'linear',
- warmup_ratio = 0.1,
- warmup_steps = 0,
- log_level = 'passive',
- log_level_replica = 'warning',
- log_on_each_node = True,
- logging_dir = None,
- logging_strategy = 'steps',
- logging_first_step = False,
- logging_steps = 1,
- logging_nan_inf_filter = False,
- save_strategy = 'steps',
- save_steps = 500,
- save_total_limit = None,
- save_safetensors = True,
- save_on_each_node = False,
- save_only_model = False,
- restore_callback_states_from_checkpoint = False,
- no_cuda = False,
- use_cpu = False,
- use_mps_device = False,
- seed = 3407,
- data_seed = 3407,
- jit_mode_eval = False,
- use_ipex = False,
- bf16 = False,
- fp16 = False,
- fp16_opt_level = 'O1',
- half_precision_backend = 'auto',
- bf16_full_eval = False,
- fp16_full_eval = False,
- tf32 = None,
- local_rank = -1,
- ddp_backend = None,
- tpu_num_cores = None,
- tpu_metrics_debug = False,
- debug = '',
- dataloader_drop_last = False,
- eval_steps = None,
- dataloader_num_workers = 0,
- dataloader_prefetch_factor = None,
- past_index = -1,
- run_name = None,
- disable_tqdm = None,
- remove_unused_columns = True,
- label_names = None,
- load_best_model_at_end = False,
- metric_for_best_model = None,
- greater_is_better = None,
- ignore_data_skip = False,
- fsdp = '',
- fsdp_min_num_params = 0,
- fsdp_config = None,
- fsdp_transformer_layer_cls_to_wrap = None,
- accelerator_config = None,
- deepspeed = None,
- label_smoothing_factor = 0.0,
- optim = 'adamw_8bit',
- optim_args = None,
- adafactor = False,
- group_by_length = False,
- length_column_name = 'length',
- report_to = None,
- ddp_find_unused_parameters = None,
- ddp_bucket_cap_mb = None,
- ddp_broadcast_buffers = None,
- dataloader_pin_memory = True,
- dataloader_persistent_workers = False,
- skip_memory_metrics = True,
- use_legacy_prediction_loop = False,
- push_to_hub = False,
- resume_from_checkpoint = None,
- hub_model_id = None,
- hub_strategy = 'every_save',
- hub_token = None,
- hub_private_repo = None,
- hub_always_push = False,
- gradient_checkpointing = False,
- gradient_checkpointing_kwargs = None,
- include_inputs_for_metrics = False,
- eval_do_concat_batches = True,
- fp16_backend = 'auto',
- evaluation_strategy = None,
- push_to_hub_model_id = None,
- push_to_hub_organization = None,
- push_to_hub_token = None,
- mp_parameters = '',
- auto_find_batch_size = False,
- full_determinism = False,
- torchdynamo = None,
- ray_scope = 'last',
- ddp_timeout = 1800,
- torch_compile = False,
- torch_compile_backend = None,
- torch_compile_mode = None,
- dispatch_batches = None,
- split_batches = None,
- include_tokens_per_second = False,
- include_num_input_tokens_seen = False,
- neftune_noise_alpha = None,
- optim_target_modules = None,
- batch_eval_metrics = False,
- eval_on_start = False,
- use_liger_kernel = False,
- eval_use_gather_object = False,
- average_tokens_across_devices = False,
- reward_model_path = None,
- judge = None,
- max_new_tokens = 64,
- max_length = 512,
- temperature = 0.9,
- missing_eos_penalty = None,
- loss_type = 'sigmoid',
- dataset_num_proc = None,
- disable_dropout = True,
- use_vllm = False,
- ds3_gather_for_generation = True,
- vllm_sampling_params = None,
- unsloth_num_chunks = -1,
- **kwargs,
- ):
- if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
- if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
- if output_dir is None and save_strategy == 'steps' and save_steps == 500:
- output_dir = 'unsloth_training_checkpoints'
- save_strategy = 'no'
- if dataset_num_proc is None:
- from multiprocessing import cpu_count
- dataset_num_proc = cpu_count()
-
- super().__init__(
- output_dir = output_dir,
- overwrite_output_dir = overwrite_output_dir,
- do_train = do_train,
- do_eval = do_eval,
- do_predict = do_predict,
- eval_strategy = eval_strategy,
- prediction_loss_only = prediction_loss_only,
- per_device_train_batch_size = per_device_train_batch_size,
- per_device_eval_batch_size = per_device_eval_batch_size,
- per_gpu_train_batch_size = per_gpu_train_batch_size,
- per_gpu_eval_batch_size = per_gpu_eval_batch_size,
- gradient_accumulation_steps = gradient_accumulation_steps,
- eval_accumulation_steps = eval_accumulation_steps,
- eval_delay = eval_delay,
- torch_empty_cache_steps = torch_empty_cache_steps,
- learning_rate = learning_rate,
- weight_decay = weight_decay,
- adam_beta1 = adam_beta1,
- adam_beta2 = adam_beta2,
- adam_epsilon = adam_epsilon,
- max_grad_norm = max_grad_norm,
- num_train_epochs = num_train_epochs,
- max_steps = max_steps,
- lr_scheduler_type = lr_scheduler_type,
- warmup_ratio = warmup_ratio,
- warmup_steps = warmup_steps,
- log_level = log_level,
- log_level_replica = log_level_replica,
- log_on_each_node = log_on_each_node,
- logging_dir = logging_dir,
- logging_strategy = logging_strategy,
- logging_first_step = logging_first_step,
- logging_steps = logging_steps,
- logging_nan_inf_filter = logging_nan_inf_filter,
- save_strategy = save_strategy,
- save_steps = save_steps,
- save_total_limit = save_total_limit,
- save_safetensors = save_safetensors,
- save_on_each_node = save_on_each_node,
- save_only_model = save_only_model,
- restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
- no_cuda = no_cuda,
- use_cpu = use_cpu,
- use_mps_device = use_mps_device,
- seed = seed,
- data_seed = data_seed,
- jit_mode_eval = jit_mode_eval,
- use_ipex = use_ipex,
- bf16 = bf16,
- fp16 = fp16,
- fp16_opt_level = fp16_opt_level,
- half_precision_backend = half_precision_backend,
- bf16_full_eval = bf16_full_eval,
- fp16_full_eval = fp16_full_eval,
- tf32 = tf32,
- local_rank = local_rank,
- ddp_backend = ddp_backend,
- tpu_num_cores = tpu_num_cores,
- tpu_metrics_debug = tpu_metrics_debug,
- debug = debug,
- dataloader_drop_last = dataloader_drop_last,
- eval_steps = eval_steps,
- dataloader_num_workers = dataloader_num_workers,
- dataloader_prefetch_factor = dataloader_prefetch_factor,
- past_index = past_index,
- run_name = run_name,
- disable_tqdm = disable_tqdm,
- remove_unused_columns = remove_unused_columns,
- label_names = label_names,
- load_best_model_at_end = load_best_model_at_end,
- metric_for_best_model = metric_for_best_model,
- greater_is_better = greater_is_better,
- ignore_data_skip = ignore_data_skip,
- fsdp = fsdp,
- fsdp_min_num_params = fsdp_min_num_params,
- fsdp_config = fsdp_config,
- fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
- accelerator_config = accelerator_config,
- deepspeed = deepspeed,
- label_smoothing_factor = label_smoothing_factor,
- optim = optim,
- optim_args = optim_args,
- adafactor = adafactor,
- group_by_length = group_by_length,
- length_column_name = length_column_name,
- report_to = report_to,
- ddp_find_unused_parameters = ddp_find_unused_parameters,
- ddp_bucket_cap_mb = ddp_bucket_cap_mb,
- ddp_broadcast_buffers = ddp_broadcast_buffers,
- dataloader_pin_memory = dataloader_pin_memory,
- dataloader_persistent_workers = dataloader_persistent_workers,
- skip_memory_metrics = skip_memory_metrics,
- use_legacy_prediction_loop = use_legacy_prediction_loop,
- push_to_hub = push_to_hub,
- resume_from_checkpoint = resume_from_checkpoint,
- hub_model_id = hub_model_id,
- hub_strategy = hub_strategy,
- hub_token = hub_token,
- hub_private_repo = hub_private_repo,
- hub_always_push = hub_always_push,
- gradient_checkpointing = gradient_checkpointing,
- gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
- include_inputs_for_metrics = include_inputs_for_metrics,
- eval_do_concat_batches = eval_do_concat_batches,
- fp16_backend = fp16_backend,
- evaluation_strategy = evaluation_strategy,
- push_to_hub_model_id = push_to_hub_model_id,
- push_to_hub_organization = push_to_hub_organization,
- push_to_hub_token = push_to_hub_token,
- mp_parameters = mp_parameters,
- auto_find_batch_size = auto_find_batch_size,
- full_determinism = full_determinism,
- torchdynamo = torchdynamo,
- ray_scope = ray_scope,
- ddp_timeout = ddp_timeout,
- torch_compile = torch_compile,
- torch_compile_backend = torch_compile_backend,
- torch_compile_mode = torch_compile_mode,
- dispatch_batches = dispatch_batches,
- split_batches = split_batches,
- include_tokens_per_second = include_tokens_per_second,
- include_num_input_tokens_seen = include_num_input_tokens_seen,
- neftune_noise_alpha = neftune_noise_alpha,
- optim_target_modules = optim_target_modules,
- batch_eval_metrics = batch_eval_metrics,
- eval_on_start = eval_on_start,
- use_liger_kernel = use_liger_kernel,
- eval_use_gather_object = eval_use_gather_object,
- average_tokens_across_devices = average_tokens_across_devices,
- reward_model_path = reward_model_path,
- judge = judge,
- max_new_tokens = max_new_tokens,
- max_length = max_length,
- temperature = temperature,
- missing_eos_penalty = missing_eos_penalty,
- loss_type = loss_type,
- dataset_num_proc = dataset_num_proc,
- disable_dropout = disable_dropout,
- use_vllm = use_vllm,
- ds3_gather_for_generation = ds3_gather_for_generation,**kwargs)
- self.vllm_sampling_params = vllm_sampling_params
- self.unsloth_num_chunks = unsloth_num_chunks
- pass
- class _UnslothXPOTrainer(OnlineDPOTrainer):
- r""""""
- _tag_names = ["trl", "xpo"]
- def __init__(
- self,
- model: Union[PreTrainedModel, nn.Module] = None,
- ref_model: Union[PreTrainedModel, nn.Module] = None,
- reward_model: Optional[nn.Module] = None,
- judge: Optional[BasePairwiseJudge] = None,
- args: Optional[XPOConfig] = None,
- data_collator: Optional[Callable] = None,
- train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
- eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
- processing_class: Optional[
- Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
- ] = None,
- peft_config: Optional[dict] = None,
- compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
- callbacks: Optional[list[TrainerCallback]] = None,
- optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
- preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
- ) -> None:
- super().__init__(
- model=model,
- ref_model=ref_model,
- judge=judge,
- reward_model=reward_model,
- args=args,
- data_collator=data_collator,
- train_dataset=train_dataset,
- eval_dataset=eval_dataset,
- processing_class=processing_class,
- reward_processing_class=processing_class, # for now, XPOTrainer can't use any reward model
- peft_config=peft_config,
- compute_metrics=compute_metrics,
- callbacks=callbacks,
- optimizers=optimizers,
- preprocess_logits_for_metrics=preprocess_logits_for_metrics,
- )
- self._alpha = self.args.alpha
- # Overwrite the stats dictionary to include XPO specific statistics
- self.stats = {
- # Remove "non_score_reward", "rlhf_reward", "scores"
- # Add "loss/dpo", "loss/xpo"
- "loss/dpo": [],
- "loss/xpo": [],
- "objective/kl": [],
- "objective/entropy": [],
- "rewards/chosen": [],
- "rewards/rejected": [],
- "rewards/accuracies": [],
- "rewards/margins": [],
- "logps/chosen": [],
- "logps/rejected": [],
- # Replace "contain_eos_token" by "model_contain_eos_token" and "ref_contain_eos_token"
- "val/model_contain_eos_token": [],
- "val/ref_contain_eos_token": [],
- "alpha": [],
- "beta": [],
- }
- if self.reward_model is not None:
- # Replace "scores" by "model_scores" and "ref_scores"
- self.stats["objective/model_scores"] = []
- self.stats["objective/ref_scores"] = []
- self.stats["objective/scores_margin"] = []
- @property
- def alpha(self):
- if isinstance(self._alpha, list):
- epoch = self.state.epoch
- return self._alpha[epoch] if epoch < len(self._alpha) else self._alpha[-1]
- else:
- return self._alpha
- def _generate_completions(self, prompts, model):
- with unwrap_model_for_generation(model, self.accelerator) as unwrapped_model:
- model_output = unwrapped_model.generate(
- input_ids=prompts["input_ids"],
- attention_mask=prompts["attention_mask"],
- generation_config=self.generation_config,
- )
- ref_model = model if self.ref_model is None else self.ref_model
- with torch.no_grad(), unwrap_model_for_generation(ref_model, self.accelerator) as unwrapped_ref_model:
- ref_output = unwrapped_ref_model.generate(
- input_ids=prompts["input_ids"],
- attention_mask=prompts["attention_mask"],
- generation_config=self.generation_config,
- )
- return model_output, ref_output
- def _process_completions(self, model_output, ref_output, prompts):
- context_length = prompts["input_ids"].shape[1]
- # Process model completions
- model_completion_ids = model_output[:, context_length:]
- model_completion_ids, model_completion_mask = truncate_right(
- model_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id
- )
- model_data = {
- "input_ids": torch.cat((prompts["input_ids"], model_completion_ids), dim=1),
- "attention_mask": torch.cat((prompts["attention_mask"], model_completion_mask), dim=1),
- "raw": prompts["raw"],
- }
- # Process reference model completions
- ref_completion_ids = ref_output[:, context_length:]
- ref_completion_ids, ref_completion_mask = truncate_right(
- ref_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id
- )
- ref_data = {
- "input_ids": torch.cat((prompts["input_ids"], ref_completion_ids), dim=1),
- "attention_mask": torch.cat((prompts["attention_mask"], ref_completion_mask), dim=1),
- "raw": prompts["raw"],
- }
- return model_data, ref_data
- def _compute_rewards(self, model_data, ref_data, context_length):
- with torch.no_grad():
- _, model_scores, _ = get_reward(
- self.reward_model, model_data["input_ids"], self.processing_class.pad_token_id, context_length
- )
- _, ref_scores, _ = get_reward(
- self.reward_model, ref_data["input_ids"], self.processing_class.pad_token_id, context_length
- )
- # Apply EOS penalty if needed
- if self.args.missing_eos_penalty is not None:
- model_contain_eos = torch.any(model_data["input_ids"] == self.processing_class.eos_token_id, dim=-1)
- ref_contain_eos = torch.any(ref_data["input_ids"] == self.processing_class.eos_token_id, dim=-1)
- model_scores[~model_contain_eos] -= self.args.missing_eos_penalty
- ref_scores[~ref_contain_eos] -= self.args.missing_eos_penalty
- return model_scores, ref_scores
- def _compute_judge(self, model_data, ref_data, context_length):
- prompts = model_data["raw"]
- model_data_completions = self.processing_class.batch_decode(
- model_data["input_ids"][:, context_length:], skip_special_tokens=True
- )
- model_data_completions = [completion.strip() for completion in model_data_completions]
- ref_data_completions = self.processing_class.batch_decode(
- ref_data["input_ids"][:, context_length:], skip_special_tokens=True
- )
- ref_data_completions = [completion.strip() for completion in ref_data_completions]
- if is_conversational({"prompt": prompts[0]}):
- model_data_completions = [
- [{"role": "assistant", "content": completion}] for completion in model_data_completions
- ]
- environment = jinja2.Environment()
- template = environment.from_string(SIMPLE_CHAT_TEMPLATE)
- prompts = [template.render(messages=message) for message in prompts]
- model_data_completions = [template.render(messages=completion) for completion in model_data_completions]
- ref_data_completions = [
- [{"role": "assistant", "content": completion}] for completion in ref_data_completions
- ]
- ref_data_completions = [template.render(messages=completion) for completion in ref_data_completions]
- ranks_of_first_completion = self.judge.judge(
- prompts,
- list(zip(model_data_completions, ref_data_completions)),
- )
- # convert ranks to a True/False mask:
- # when rank == 0, it means the first completion is the best
- # when rank == 1, it means the second completion is the best
- return torch.tensor([rank == 0 for rank in ranks_of_first_completion], device=model_data["input_ids"].device)
- def _compute_logprobs(self, model, model_data, ref_data, context_length):
- def compute_logprobs_for_data(m, data):
- output = m(data["input_ids"], attention_mask=data["attention_mask"])
- logits = output.logits[:, context_length - 1 : -1]
- token_logprobs = selective_log_softmax(logits, data["input_ids"][:, context_length:])
- return token_logprobs
- # Compute logprobs for model completions
- model_logprobs_model_data = compute_logprobs_for_data(model, model_data)
- # Compute logprobs for model on reference completions (for XPO loss)
- model_logprobs_ref_data = compute_logprobs_for_data(model, ref_data)
- # Compute logprobs for reference model completions
- with torch.no_grad():
- if self.ref_model is None:
- with model.disable_adapter():
- ref_logprobs_model_data = compute_logprobs_for_data(model, model_data)
- ref_logprobs_ref_data = compute_logprobs_for_data(model, ref_data)
- else:
- ref_logprobs_model_data = compute_logprobs_for_data(self.ref_model, model_data)
- ref_logprobs_ref_data = compute_logprobs_for_data(self.ref_model, ref_data)
- # Mask padding tokens
- model_padding_mask = model_data["attention_mask"][:, context_length:] == 0
- ref_padding_mask = ref_data["attention_mask"][:, context_length:] == 0
- model_logprobs_model_data = model_logprobs_model_data.masked_fill(model_padding_mask, 0.0)
- model_logprobs_ref_data = model_logprobs_ref_data.masked_fill(ref_padding_mask, 0.0)
- ref_logprobs_ref_data = ref_logprobs_ref_data.masked_fill(ref_padding_mask, 0.0)
- ref_logprobs_model_data = ref_logprobs_model_data.masked_fill(model_padding_mask, 0.0)
- return model_logprobs_model_data, model_logprobs_ref_data, ref_logprobs_ref_data, ref_logprobs_model_data
- def _compute_losses(
- self,
- model_logprobs_model_data,
- model_logprobs_ref_data,
- ref_logprobs_ref_data,
- ref_logprobs_model_data,
- chosen_mask,
- ):
- # Compute log probs
- model_logprobs_model_data_sum = model_logprobs_model_data.sum(1)
- model_logprobs_ref_data_sum = model_logprobs_ref_data.sum(1)
- ref_logprobs_ref_data_sum = ref_logprobs_ref_data.sum(1)
- ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1)
- chosen_model_logprobs = torch.where(chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
- chosen_ref_logprobs = torch.where(chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
- chosen_log_ratios = chosen_model_logprobs - chosen_ref_logprobs
- rejected_model_logprobs = torch.where(~chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
- rejected_ref_logprobs = torch.where(~chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
- rejected_log_ratios = rejected_model_logprobs - rejected_ref_logprobs
- # Compute logits as the difference between chosen and rejected log ratios
- logits = chosen_log_ratios - rejected_log_ratios
- if self.args.loss_type == "sigmoid":
- dpo_losses = -F.logsigmoid(self.beta * logits)
- elif self.args.loss_type == "ipo":
- dpo_losses = (logits - 1 / (2 * self.beta)) ** 2
- else:
- raise NotImplementedError(f"invalid loss type {self.args.loss_type}")
- # Compute XPO specific loss
- xpo_losses = self.alpha * model_logprobs_ref_data_sum
- # Total loss
- loss = (dpo_losses + xpo_losses).mean()
- return loss, dpo_losses, xpo_losses
- def _log_statistics(
- self,
- model_data,
- ref_data,
- model_logprobs_model_data,
- model_logprobs_ref_data,
- ref_logprobs_ref_data,
- ref_logprobs_model_data,
- chosen_mask,
- dpo_losses,
- xpo_losses,
- context_length,
- model_scores=None,
- ref_scores=None,
- ):
- # Helper function to gather and compute mean
- def gather_mean(tensor):
- return self.accelerator.gather_for_metrics(tensor).mean().item()
- # Log losses
- self.stats["loss/dpo"].append(gather_mean(dpo_losses))
- self.stats["loss/xpo"].append(gather_mean(xpo_losses))
- # Log scores
- if self.reward_model is not None:
- self.stats["objective/model_scores"].append(gather_mean(model_scores))
- self.stats["objective/ref_scores"].append(gather_mean(ref_scores))
- self.stats["objective/scores_margin"].append(gather_mean(model_scores - ref_scores))
- # Log logprobs
- model_logprobs_model_data_sum = model_logprobs_model_data.sum(1)
- model_logprobs_ref_data_sum = model_logprobs_ref_data.sum(1)
- ref_logprobs_ref_data_sum = ref_logprobs_ref_data.sum(1)
- ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1)
- chosen_model_logprobs = torch.where(chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
- chosen_ref_logprobs = torch.where(chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
- chosen_log_ratios = chosen_model_logprobs - chosen_ref_logprobs
- rejected_model_logprobs = torch.where(~chosen_mask, model_logprobs_model_data_sum, model_logprobs_ref_data_sum)
- rejected_ref_logprobs = torch.where(~chosen_mask, ref_logprobs_model_data_sum, ref_logprobs_ref_data_sum)
- rejected_log_ratios = rejected_model_logprobs - rejected_ref_logprobs
- self.stats["logps/chosen"].append(gather_mean(chosen_model_logprobs.mean() + chosen_ref_logprobs.mean()))
- self.stats["logps/rejected"].append(gather_mean(rejected_model_logprobs.mean() + rejected_ref_logprobs.mean()))
- # Log rewards
- # Compute various statistics
- chosen_rewards = chosen_log_ratios * self.beta
- rejected_rewards = rejected_log_ratios * self.beta
- self.stats["rewards/chosen"].append(gather_mean(chosen_rewards.mean()))
- self.stats["rewards/rejected"].append(gather_mean(rejected_rewards.mean()))
- # Calculate KL divergence for model and ref data
- kl_model_data = model_logprobs_model_data - ref_logprobs_model_data
- kl_ref_data = model_logprobs_ref_data - ref_logprobs_ref_data
- mean_kl = (kl_model_data.sum(1) + kl_ref_data.sum(1)).mean() / 2
- self.stats["objective/kl"].append(gather_mean(mean_kl))
- # Calculate entropy for model and ref data
- entropy_model_data = -model_logprobs_model_data.sum(1)
- entropy_ref_data = -model_logprobs_ref_data.sum(1)
- mean_entropy = (entropy_model_data.mean() + entropy_ref_data.mean()) / 2
- self.stats["objective/entropy"].append(gather_mean(mean_entropy))
- # Calculate margins
- margin = chosen_rewards - rejected_rewards
- self.stats["rewards/margins"].append(gather_mean(margin.mean()))
- # Calculate accuracy
- accuracy = (margin > 0).float()
- self.stats["rewards/accuracies"].append(gather_mean(accuracy.mean()))
- # Log EOS token statistics
- model_eos = (model_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1)
- ref_eos = (ref_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1)
- self.stats["val/model_contain_eos_token"].append(gather_mean(model_eos.float()))
- self.stats["val/ref_contain_eos_token"].append(gather_mean(ref_eos.float()))
- # Log alpha and beta
- self.stats["alpha"].append(self.alpha)
- self.stats["beta"].append(self.beta)
- def training_step(
- self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None
- ) -> torch.Tensor:
- model.train()
- # Apply chat template and tokenize the input
- batch_size = len(next(iter(inputs.values())))
- prompts = inputs["prompt"]
- inputs = [{k: v[i] for k, v in inputs.items()} for i in range(batch_size)]
- inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs]
- inputs = [self.tokenize_row(x, self.model.config.is_encoder_decoder, self.processing_class) for x in inputs]
- inputs = self.data_collator(inputs)
- # need the prompt_ only
- inputs = self._prepare_inputs(inputs)
- context_length = inputs["prompt_input_ids"].shape[1]
- prompts = {
- "input_ids": inputs["prompt_input_ids"],
- "attention_mask": inputs["prompt_attention_mask"],
- "raw": prompts,
- }
- del inputs
- # Sample completions from both the model and the reference model
- model_output, ref_output = self._generate_completions(prompts, model)
- # Process model completions
- model_data, ref_data = self._process_completions(model_output, ref_output, prompts)
- # Compute rewards
- if self.reward_model is not None:
- model_scores, ref_scores = self._compute_rewards(model_data, ref_data, context_length)
- chosen_mask = model_scores >= ref_scores
- else:
- model_scores, ref_scores = None, None
- chosen_mask = self._compute_judge(model_data, ref_data, context_length)
- # Compute logprobs
- model_logprobs_model_data, model_logprobs_ref_data, ref_logprobs_ref_data, ref_logprobs_model_data = (
- self._compute_logprobs(model, model_data, ref_data, context_length)
- )
- # Compute loss
- loss, dpo_losses, xpo_losses = self._compute_losses(
- model_logprobs_model_data,
- model_logprobs_ref_data,
- ref_logprobs_ref_data,
- ref_logprobs_model_data,
- chosen_mask,
- )
- # Log everything
- self._log_statistics(
- model_data,
- ref_data,
- model_logprobs_model_data.detach(),
- model_logprobs_ref_data.detach(),
- ref_logprobs_ref_data,
- ref_logprobs_model_data,
- chosen_mask,
- dpo_losses.detach(),
- xpo_losses.detach(),
- context_length,
- model_scores,
- ref_scores,
- )
- if (
- self.args.torch_empty_cache_steps is not None
- and self.state.global_step % self.args.torch_empty_cache_steps == 0
- ):
- empty_cache()
- kwargs = {}
- # For LOMO optimizers you need to explicitly use the learning rate
- if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]:
- kwargs["learning_rate"] = self._get_learning_rate()
- if self.args.n_gpu > 1:
- loss = loss.mean() # mean() to average on multi-gpu parallel training
- if self.use_apex:
- with amp.scale_loss(loss, self.optimizer) as scaled_loss:
- scaled_loss.backward()
- else:
- self.accelerator.backward(loss, **kwargs)
- return loss.detach() / self.args.gradient_accumulation_steps
- def create_model_card(
- self,
- model_name: Optional[str] = None,
- dataset_name: Optional[str] = None,
- tags: Union[str, list[str], None] = None,
- ):
- """
- Creates a draft of a model card using the information available to the `Trainer`.
- Args:
- model_name (`str` or `None`, *optional*, defaults to `None`):
- Name of the model.
- dataset_name (`str` or `None`, *optional*, defaults to `None`):
- Name of the dataset used for training.
- tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
- Tags to be associated with the model card.
- """
- if not self.is_world_process_zero():
- return
- if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
- base_model = self.model.config._name_or_path
- else:
- base_model = None
- tags = tags or []
- if isinstance(tags, str):
- tags = [tags]
- if hasattr(self.model.config, "unsloth_version"):
- tags.append("unsloth")
- citation = textwrap.dedent("""\
- @article{jung2024binary,
- title = {{Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF}},
- author = {Tengyang Xie and Dylan J. Foster and Akshay Krishnamurthy and Corby Rosset and Ahmed Awadallah and Alexander Rakhlin},
- year = 2024,
- eprint = {arXiv:2405.21046}
- }""")
- model_card = generate_model_card(
- base_model=base_model,
- model_name=model_name,
- hub_model_id=self.hub_model_id,
- dataset_name=dataset_name,
- tags=tags,
- wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
- comet_url=get_comet_experiment_url(),
- trainer_name="XPO",
- trainer_citation=citation,
- paper_title="Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF",
- paper_id="2405.21046",
- )
- model_card.save(os.path.join(self.args.output_dir, "README.md"))
- class UnslothXPOTrainer(_UnslothXPOTrainer):
- """
-
- Initialize XPOTrainer as a subclass of [`OnlineDPOConfig`].
- Args:
- model (`transformers.PreTrainedModel`):
- The model to train, preferably an `AutoModelForCausalLM`.
- ref_model (`PreTrainedModelWrapper`):
- Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no
- reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized.
- reward_model (`transformers.PreTrainedModel`):
- The reward model to score completions with, preferably an `AutoModelForSequenceClassification`.
- judge (`BasePairwiseJudge`):
- The judge to use for pairwise comparison of model completions.
- args (`XPOConfig`):
- The XPO config arguments to use for training.
- data_collator (`transformers.DataCollator`):
- The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used
- which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences.
- train_dataset (`datasets.Dataset`):
- The dataset to use for training.
- eval_dataset (`datasets.Dataset`):
- The dataset to use for evaluation.
- processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*):
- Processing class used to process the data. If provided, will be used to automatically process the inputs
- for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
- reuse the fine-tuned model.
- peft_config (`dict`):
- The peft config to use for training.
- compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
- The function to use to compute the metrics. Must take a `EvalPrediction` and return
- a dictionary string to metric values.
- callbacks (`list[transformers.TrainerCallback]`):
- The callbacks to use for training.
- optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
- The optimizer and scheduler to use for training.
- preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
- The function to use to preprocess the logits before computing the metrics.
-
- """
- def __init__(
- self,
- model = None,
- ref_model = None,
- reward_model = None,
- judge = None,
- args = None,
- data_collator = None,
- train_dataset = None,
- eval_dataset = None,
- processing_class = None,
- peft_config = None,
- compute_metrics = None,
- callbacks = None,
- preprocess_logits_for_metrics = None,
- **kwargs
- ):
- if args is None: args = UnslothXPOConfig()
- use_bf16 = getattr(args, 'bf16', False)
- use_fp16 = getattr(args, 'fp16', False)
- dtype = getattr(model.config, 'torch_dtype', None)
- if dtype is None: dtype = model.get_input_embeddings().dtype
- from unsloth_zoo.utils import _get_dtype
- dtype = _get_dtype(dtype)
- float16 = dtype == torch.float16
- if float16 and use_bf16: raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
- if not float16 and use_fp16: raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
- if not use_bf16 and not use_fp16:
- args.fp16 = float16
- args.bf16 = not float16
- os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
- if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
- args.eval_strategy = 'steps'
- if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
- ga_steps = getattr(args, 'gradient_accumulation_steps', None)
- if ga_steps is not None and ga_steps > 1:
- from transformers import __version__ as transformers_version
- if Version(transformers_version) <= Version('4.45.2'):
- print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
- '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
- if getattr(args, 'eval_strategy', 'no') != 'no':
- eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
- if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
- if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
- fp16_full_eval = getattr(args, 'fp16_full_eval', False)
- bf16_full_eval = getattr(args, 'bf16_full_eval', False)
- if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
- if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
- if not bf16_full_eval and not fp16_full_eval: args.bf16_full_eval = args.bf16; args.fp16_full_eval = args.fp16
- if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
- pass
- else:
- model_max_seq_length = getattr(model, 'max_seq_length', None)
- args_max_seq_length = getattr(args, 'max_seq_length', None)
- if args_max_seq_length is None and model_max_seq_length is not None:
- max_seq_length = model.max_seq_length
- if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
- if model is not None and hasattr(model, 'for_training'):
- model.for_training()
- if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
- if 'processing_class' in locals():
- if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
- if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
- other_metrics = []
-
- from unsloth_zoo.logging_utils import PatchRLStatistics
- PatchRLStatistics('xpo_trainer', other_metrics)
-
- super().__init__(
- model = model,
- ref_model = ref_model,
- reward_model = reward_model,
- judge = judge,
- args = args,
- data_collator = data_collator,
- train_dataset = train_dataset,
- eval_dataset = eval_dataset,
- processing_class = processing_class,
- peft_config = peft_config,
- compute_metrics = compute_metrics,
- callbacks = callbacks,
- preprocess_logits_for_metrics = preprocess_logits_for_metrics,**kwargs)
- if hasattr(self, 'neftune_hook_handle'):
- self.neftune_hook_handle.remove()
- if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
- if getattr(args, 'neftune_noise_alpha', None) is not None:
- model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
- pass
-
- pass
|