|
@@ -0,0 +1,421 @@
|
|
|
|
+import ast
|
|
|
|
+import json
|
|
|
|
+import math
|
|
|
|
+
|
|
|
|
+import numpy as np
|
|
|
|
+import pandas as pd
|
|
|
|
+from scipy.signal import hilbert
|
|
|
|
+
|
|
|
|
+from app.config import dataBase
|
|
|
|
+from app.database import get_engine
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class CMSAnalyst:
|
|
|
|
+ def __init__(self, fmin, fmax, table_name, ids):
|
|
|
|
+
|
|
|
|
+ self.datas = self._get_by_id(table_name, ids)
|
|
|
|
+ self.datas = [df[['mesure_data', 'time_stamp', 'sampling_frequency', 'wind_turbine_number', 'rotational_speed',
|
|
|
|
+ 'mesure_point_name']] for df in self.datas]
|
|
|
|
+ # 只输入一个id,返回一个[df],所以拿到self.data[0]
|
|
|
|
+ self.data_filter = self.datas[0]
|
|
|
|
+ # 取数据列
|
|
|
|
+ self.data = np.array(ast.literal_eval(self.data_filter['mesure_data'][0]))
|
|
|
|
+ self.envelope_spectrum_m = self.data.shape[0]
|
|
|
|
+ self.envelope_spectrum_n = 1
|
|
|
|
+ self.fs = int(self.data_filter['sampling_frequency'].iloc[0])
|
|
|
|
+ self.envelope_spectrum_t = np.arange(self.envelope_spectrum_m) / self.fs
|
|
|
|
+ self.fmin = fmin if fmin is not None else 0
|
|
|
|
+ self.fmax = fmax if fmax is not None else float('inf')
|
|
|
|
+ self.envelope_spectrum_y = self._bandpass_filter(self.data)
|
|
|
|
+ self.f, self.HP = self._calculate_envelope_spectrum(self.envelope_spectrum_y)
|
|
|
|
+ self.wind_code = self.data_filter['wind_turbine_number'].iloc[0]
|
|
|
|
+ self.rpm_Gen = self.data_filter['rotational_speed'].iloc[0]
|
|
|
|
+ self.mesure_point_name = self.data_filter['mesure_point_name'].iloc[0]
|
|
|
|
+ self.fn_Gen = round(self.rpm_Gen / 60, 2)
|
|
|
|
+
|
|
|
|
+ self.CF = self.Characteristic_Frequency()
|
|
|
|
+ self.CF = pd.DataFrame(self.CF, index=[0])
|
|
|
|
+ if self.CF['type'].iloc[0] == 'bearing':
|
|
|
|
+ n_rolls_m = self.CF['n_rolls'].iloc[0]
|
|
|
|
+ d_rolls_m = self.CF['d_rolls'].iloc[0]
|
|
|
|
+ D_diameter_m = self.CF['D_diameter'].iloc[0]
|
|
|
|
+ theta_deg_m = self.CF['theta_deg'].iloc[0]
|
|
|
|
+ self.bearing_frequencies = self.calculate_bearing_frequencies(n_rolls_m, d_rolls_m, D_diameter_m,
|
|
|
|
+ theta_deg_m, self.rpm_Gen)
|
|
|
|
+ self.bearing_frequencies = pd.DataFrame(self.bearing_frequencies, index=[0])
|
|
|
|
+ (
|
|
|
|
+ self.frequency_domain_analysis_t,
|
|
|
|
+ self.frequency_domain_analysis_f,
|
|
|
|
+ self.frequency_domain_analysis_m,
|
|
|
|
+ self.frequency_domain_analysis_mag,
|
|
|
|
+ self.frequency_domain_analysis_Xrms,
|
|
|
|
+ ) = self._calculate_spectrum(self.data)
|
|
|
|
+
|
|
|
|
+ # time_domain_analysis
|
|
|
|
+ self.time_domain_analysis_t = np.arange(self.data.shape[0]) / self.fs
|
|
|
|
+
|
|
|
|
+ def _get_by_id(self, windcode, ids):
|
|
|
|
+ df_res = []
|
|
|
|
+ engine = get_engine(dataBase.DATA_DB)
|
|
|
|
+ for id in ids:
|
|
|
|
+ table_name = windcode + '_wave'
|
|
|
|
+ lastday_df_sql = f"SELECT * FROM {table_name} where id = {id} "
|
|
|
|
+ df = pd.read_sql(lastday_df_sql, engine)
|
|
|
|
+ df_res.append(df)
|
|
|
|
+ return df_res
|
|
|
|
+
|
|
|
|
+ # envelope_spectrum_analysis
|
|
|
|
+ def _bandpass_filter(self, data):
|
|
|
|
+ """带通滤波"""
|
|
|
|
+ m = data.shape[0]
|
|
|
|
+ ni = round(self.fmin * self.envelope_spectrum_m / self.fs + 1)
|
|
|
|
+ if self.fmax == float('inf'):
|
|
|
|
+ na = m
|
|
|
|
+ else:
|
|
|
|
+ na = round(self.fmax * m / self.fs + 1)
|
|
|
|
+ col = 1
|
|
|
|
+ y = np.zeros((self.envelope_spectrum_m, col))
|
|
|
|
+ z = np.fft.fft(data)
|
|
|
|
+ a = np.zeros(self.envelope_spectrum_m, dtype=complex)
|
|
|
|
+ a[ni:na] = z[ni:na]
|
|
|
|
+ a[self.envelope_spectrum_m - na + 1: self.envelope_spectrum_m - ni + 1] = z[self.envelope_spectrum_m - na + 1: self.envelope_spectrum_m - ni + 1]
|
|
|
|
+ z = np.fft.ifft(a)
|
|
|
|
+ y[:, 0] = np.real(z)
|
|
|
|
+
|
|
|
|
+ return y
|
|
|
|
+
|
|
|
|
+ def _calculate_envelope_spectrum(self, y):
|
|
|
|
+ """计算包络谱"""
|
|
|
|
+ m, n = y.shape
|
|
|
|
+ HP = np.zeros((m, n))
|
|
|
|
+ col = 1
|
|
|
|
+ for p in range(col):
|
|
|
|
+ H = np.abs(hilbert(y[:, p] - np.mean(y[:, p])))
|
|
|
|
+ HP[:, p] = np.abs(np.fft.fft(H - np.mean(H))) * 2 / m
|
|
|
|
+ f = np.fft.fftfreq(m, d=1 / self.fs)
|
|
|
|
+ return f, HP
|
|
|
|
+
|
|
|
|
+ def envelope_spectrum(self):
|
|
|
|
+ """绘制包络谱"""
|
|
|
|
+ # 只取正频率部分
|
|
|
|
+ positive_frequencies = self.f[: self.envelope_spectrum_m // 2]
|
|
|
|
+ positive_HP = self.HP[: self.envelope_spectrum_m // 2, 0]
|
|
|
|
+
|
|
|
|
+ x = positive_frequencies
|
|
|
|
+ y = positive_HP
|
|
|
|
+ title = "包络谱"
|
|
|
|
+ xaxis = "频率(Hz)"
|
|
|
|
+ yaxis = "加速度(m/s^2)"
|
|
|
|
+ Xrms = np.sqrt(np.mean(y ** 2)) # 加速度均方根值(有效值)
|
|
|
|
+ rpm_Gen = round(self.rpm_Gen, 2)
|
|
|
|
+ BPFI_1X = round(self.bearing_frequencies['BPFI'].iloc[0], 2)
|
|
|
|
+ BPFO_1X = round(self.bearing_frequencies['BPFO'].iloc[0], 2)
|
|
|
|
+ BSF_1X = round(self.bearing_frequencies['BSF'].iloc[0], 2)
|
|
|
|
+ FTF_1X = round(self.bearing_frequencies['FTF'].iloc[0], 2)
|
|
|
|
+ fn_Gen = round(self.fn_Gen, 2)
|
|
|
|
+ _3P_1X = round(self.fn_Gen, 2) * 3
|
|
|
|
+
|
|
|
|
+ if self.CF['type'].iloc[0] == 'bearing':
|
|
|
|
+ result = {
|
|
|
|
+ "fs": self.fs,
|
|
|
|
+ "Xrms": round(Xrms, 2),
|
|
|
|
+ "x": list(x),
|
|
|
|
+ "y": list(y),
|
|
|
|
+ "title": title,
|
|
|
|
+ "xaxis": xaxis,
|
|
|
|
+ "yaxis": yaxis,
|
|
|
|
+ "rpm_Gen": round(rpm_Gen, 2), # 转速r/min
|
|
|
|
+ "BPFI": [{"Xaxis": BPFI_1X, "val": "1BPFI"}, {"Xaxis": BPFI_1X * 2, "val": "2BPFI"},
|
|
|
|
+ {"Xaxis": BPFI_1X * 3, "val": "3BPFI"}, {"Xaxis": BPFI_1X * 4, "val": "4BPFI"},
|
|
|
|
+ {"Xaxis": BPFI_1X * 5, "val": "5BPFI"}, {"Xaxis": BPFI_1X * 6, "val": "6BPFI"}],
|
|
|
|
+ "BPFO": [{"Xaxis": BPFO_1X, "val": "1BPFO"}, {"Xaxis": BPFO_1X * 2, "val": "2BPFO"},
|
|
|
|
+ {"Xaxis": BPFO_1X * 3, "val": "3BPFO"}, {"Xaxis": BPFO_1X * 4, "val": "4BPFO"},
|
|
|
|
+ {"Xaxis": BPFO_1X * 5, "val": "5BPFO"}, {"Xaxis": BPFO_1X * 6, "val": "6BPFO"}],
|
|
|
|
+ "BSF": [{"Xaxis": BSF_1X, "val": "1BSF"}, {"Xaxis": BSF_1X * 2, "val": "2BSF"},
|
|
|
|
+ {"Xaxis": BSF_1X * 3, "val": "3BSF"}, {"Xaxis": BSF_1X * 4, "val": "4BSF"},
|
|
|
|
+ {"Xaxis": BSF_1X * 5, "val": "5BSF"}, {"Xaxis": BSF_1X * 6, "val": "6BSF"}],
|
|
|
|
+ "FTF": [{"Xaxis": FTF_1X, "val": "1FTF"}, {"Xaxis": FTF_1X * 2, "val": "2FTF"},
|
|
|
|
+ {"Xaxis": FTF_1X * 3, "val": "3FTF"}, {"Xaxis": FTF_1X * 4, "val": "4FTF"},
|
|
|
|
+ {"Xaxis": FTF_1X * 5, "val": "5FTF"}, {"Xaxis": FTF_1X * 6, "val": "6FTF"}],
|
|
|
|
+ "fn_Gen": [{"Xaxis": fn_Gen, "val": "1X"}, {"Xaxis": fn_Gen * 2, "val": "2X"},
|
|
|
|
+ {"Xaxis": fn_Gen * 3, "val": "3X"}, {"Xaxis": fn_Gen * 4, "val": "4X"},
|
|
|
|
+ {"Xaxis": fn_Gen * 5, "val": "5X"}, {"Xaxis": fn_Gen * 6, "val": "6X"}],
|
|
|
|
+ "B3P": _3P_1X,
|
|
|
|
+ }
|
|
|
|
+ return result
|
|
|
|
+
|
|
|
|
+ def _calculate_spectrum(self, data):
|
|
|
|
+ """计算频谱"""
|
|
|
|
+ m = data.shape[0]
|
|
|
|
+ n = 1
|
|
|
|
+ t = np.arange(m) / self.fs
|
|
|
|
+ mag = np.zeros((m, n))
|
|
|
|
+ Xrms = np.sqrt(np.mean(data ** 2)) # 加速度均方根值(有效值)
|
|
|
|
+ # col=1
|
|
|
|
+ # for p in range(col):
|
|
|
|
+ mag = np.abs(np.fft.fft(data - np.mean(data))) * 2 / m
|
|
|
|
+ f = np.fft.fftfreq(m, d=1 / self.fs)
|
|
|
|
+ return t, f, m, mag, Xrms
|
|
|
|
+
|
|
|
|
+ def frequency_domain(self):
|
|
|
|
+ """绘制频域波形参数"""
|
|
|
|
+ # 只取正频率部分
|
|
|
|
+ positive_frequencies = self.frequency_domain_analysis_f[
|
|
|
|
+ : self.frequency_domain_analysis_m // 2
|
|
|
|
+ ]
|
|
|
|
+ positive_mag = self.frequency_domain_analysis_mag[
|
|
|
|
+ : self.frequency_domain_analysis_m // 2
|
|
|
|
+ ]
|
|
|
|
+
|
|
|
|
+ x = positive_frequencies
|
|
|
|
+ y = positive_mag
|
|
|
|
+ title = "频域信号"
|
|
|
|
+ xaxis = "频率(Hz)"
|
|
|
|
+ yaxis = "加速度(m/s^2)"
|
|
|
|
+ Xrms = self.frequency_domain_analysis_Xrms
|
|
|
|
+
|
|
|
|
+ rpm_Gen = round(self.rpm_Gen, 2)
|
|
|
|
+ BPFI_1X = round(self.bearing_frequencies['BPFI'].iloc[0], 2)
|
|
|
|
+ BPFO_1X = round(self.bearing_frequencies['BPFO'].iloc[0], 2)
|
|
|
|
+ BSF_1X = round(self.bearing_frequencies['BSF'].iloc[0], 2)
|
|
|
|
+ FTF_1X = round(self.bearing_frequencies['FTF'].iloc[0], 2)
|
|
|
|
+ fn_Gen = round(self.fn_Gen, 2)
|
|
|
|
+ _3P_1X = round(self.fn_Gen, 2) * 3
|
|
|
|
+
|
|
|
|
+ if self.CF['type'].iloc[0] == 'bearing':
|
|
|
|
+ result = {
|
|
|
|
+ "fs": self.fs,
|
|
|
|
+ "Xrms": round(Xrms, 2),
|
|
|
|
+ "x": list(x),
|
|
|
|
+ "y": list(y),
|
|
|
|
+ "title": title,
|
|
|
|
+ "xaxis": xaxis,
|
|
|
|
+ "yaxis": yaxis,
|
|
|
|
+ "rpm_Gen": round(rpm_Gen, 2), # 转速r/min
|
|
|
|
+ "BPFI": [{"Xaxis": BPFI_1X, "val": "1BPFI"}, {"Xaxis": BPFI_1X * 2, "val": "2BPFI"},
|
|
|
|
+ {"Xaxis": BPFI_1X * 3, "val": "3BPFI"}, {"Xaxis": BPFI_1X * 4, "val": "4BPFI"},
|
|
|
|
+ {"Xaxis": BPFI_1X * 5, "val": "5BPFI"}, {"Xaxis": BPFI_1X * 6, "val": "6BPFI"}],
|
|
|
|
+ "BPFO": [{"Xaxis": BPFO_1X, "val": "1BPFO"}, {"Xaxis": BPFO_1X * 2, "val": "2BPFO"},
|
|
|
|
+ {"Xaxis": BPFO_1X * 3, "val": "3BPFO"}, {"Xaxis": BPFO_1X * 4, "val": "4BPFO"},
|
|
|
|
+ {"Xaxis": BPFO_1X * 5, "val": "5BPFO"}, {"Xaxis": BPFO_1X * 6, "val": "6BPFO"}],
|
|
|
|
+ "BSF": [{"Xaxis": BSF_1X, "val": "1BSF"}, {"Xaxis": BSF_1X * 2, "val": "2BSF"},
|
|
|
|
+ {"Xaxis": BSF_1X * 3, "val": "3BSF"}, {"Xaxis": BSF_1X * 4, "val": "4BSF"},
|
|
|
|
+ {"Xaxis": BSF_1X * 5, "val": "5BSF"}, {"Xaxis": BSF_1X * 6, "val": "6BSF"}],
|
|
|
|
+ "FTF": [{"Xaxis": FTF_1X, "val": "1FTF"}, {"Xaxis": FTF_1X * 2, "val": "2FTF"},
|
|
|
|
+ {"Xaxis": FTF_1X * 3, "val": "3FTF"}, {"Xaxis": FTF_1X * 4, "val": "4FTF"},
|
|
|
|
+ {"Xaxis": FTF_1X * 5, "val": "5FTF"}, {"Xaxis": FTF_1X * 6, "val": "6FTF"}],
|
|
|
|
+ "fn_Gen": [{"Xaxis": fn_Gen, "val": "1X"}, {"Xaxis": fn_Gen * 2, "val": "2X"},
|
|
|
|
+ {"Xaxis": fn_Gen * 3, "val": "3X"}, {"Xaxis": fn_Gen * 4, "val": "4X"},
|
|
|
|
+ {"Xaxis": fn_Gen * 5, "val": "5X"}, {"Xaxis": fn_Gen * 6, "val": "6X"}],
|
|
|
|
+ "B3P": _3P_1X,
|
|
|
|
+ }
|
|
|
|
+ result = json.dumps(result, ensure_ascii=False)
|
|
|
|
+ return result
|
|
|
|
+
|
|
|
|
+ # time_domain_analysis
|
|
|
|
+ def time_domain(self):
|
|
|
|
+ """绘制时域波形参数"""
|
|
|
|
+ x = self.time_domain_analysis_t
|
|
|
|
+ y = self.data
|
|
|
|
+ rpm_Gen = self.rpm_Gen
|
|
|
|
+ title = "时间域信号"
|
|
|
|
+ xaxis = "时间(s)"
|
|
|
|
+ yaxis = "加速度(m/s^2)"
|
|
|
|
+ # 图片右侧统计量
|
|
|
|
+ mean_value = np.mean(y) # 平均值
|
|
|
|
+ max_value = np.max(y) # 最大值
|
|
|
|
+ min_value = np.min(y) # 最小值
|
|
|
|
+ Xrms = np.sqrt(np.mean(y ** 2)) # 加速度均方根值(有效值)
|
|
|
|
+ Xp = (max_value - min_value) / 2 # 峰值(单峰最大值) # 峰值
|
|
|
|
+ Xpp = max_value - min_value # 峰峰值
|
|
|
|
+ Cf = Xp / Xrms # 峰值指标
|
|
|
|
+ Sf = Xrms / mean_value # 波形指标
|
|
|
|
+ If = Xp / np.mean(np.abs(y)) # 脉冲指标
|
|
|
|
+ Xr = np.mean(np.sqrt(np.abs(y))) ** 2 # 方根幅值
|
|
|
|
+ Ce = Xp / Xr # 裕度指标
|
|
|
|
+ # 计算每个数据点的绝对值减去均值后的三次方,并求和
|
|
|
|
+ sum_abs_diff_cubed_3 = np.mean((np.abs(y) - mean_value) ** 3)
|
|
|
|
+ # 计算偏度指标
|
|
|
|
+ Cw = sum_abs_diff_cubed_3 / (Xrms ** 3)
|
|
|
|
+ # 计算每个数据点的绝对值减去均值后的四次方,并求和
|
|
|
|
+ sum_abs_diff_cubed_4 = np.mean((np.abs(y) - mean_value) ** 4)
|
|
|
|
+ # 计算峭度指标
|
|
|
|
+ Cq = sum_abs_diff_cubed_4 / (Xrms ** 4)
|
|
|
|
+ result = {
|
|
|
|
+
|
|
|
|
+ "x": list(x),
|
|
|
|
+ "y": list(y),
|
|
|
|
+ "title": title,
|
|
|
|
+ "xaxis": xaxis,
|
|
|
|
+ "yaxis": yaxis,
|
|
|
|
+ "fs": self.fs,
|
|
|
|
+ "Xrms": round(Xrms, 2), # 有效值
|
|
|
|
+ "mean_value": round(mean_value, 2), # 均值
|
|
|
|
+ "max_value": round(max_value, 2), # 最大值
|
|
|
|
+ "min_value": round(min_value, 2), # 最小值
|
|
|
|
+ "Xp": round(Xp, 2), # 峰值
|
|
|
|
+ "Xpp": round(Xpp, 2), # 峰峰值
|
|
|
|
+ "Cf": round(Cf, 2), # 峰值指标
|
|
|
|
+ "Sf": round(Sf, 2), # 波形因子
|
|
|
|
+ "If": round(If, 2), # 脉冲指标
|
|
|
|
+ "Ce": round(Ce, 2), # 裕度指标
|
|
|
|
+ "Cw": round(Cw, 2), # 偏度指标
|
|
|
|
+ "Cq": round(Cq, 2), # 峭度指标
|
|
|
|
+ "rpm_Gen": round(rpm_Gen, 2), # 转速r/min
|
|
|
|
+
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ result = json.dumps(result, ensure_ascii=False)
|
|
|
|
+
|
|
|
|
+ return result
|
|
|
|
+
|
|
|
|
+ # trend_analysis
|
|
|
|
+
|
|
|
|
+ def trend_analysis(self):
|
|
|
|
+
|
|
|
|
+ all_stats = []
|
|
|
|
+
|
|
|
|
+ # 定义积分函数
|
|
|
|
+ def _integrate(data, dt):
|
|
|
|
+ return np.cumsum(data) * dt
|
|
|
|
+
|
|
|
|
+ # 定义计算统计指标的函数
|
|
|
|
+ def _calculate_stats(data):
|
|
|
|
+ mean_value = np.mean(data)
|
|
|
|
+ max_value = np.max(data)
|
|
|
|
+ min_value = np.min(data)
|
|
|
|
+ Xrms = np.sqrt(np.mean(data ** 2)) # 加速度均方根值(有效值)
|
|
|
|
+ # Xrms = filtered_acceleration_rms # 加速度均方根值(有效值)
|
|
|
|
+ Xp = (max_value - min_value) / 2 # 峰值(单峰最大值) # 峰值
|
|
|
|
+ Cf = Xp / Xrms # 峰值指标
|
|
|
|
+ Sf = Xrms / mean_value # 波形指标
|
|
|
|
+ If = Xp / np.mean(np.abs(data)) # 脉冲指标
|
|
|
|
+ Xr = np.mean(np.sqrt(np.abs(data))) ** 2 # 方根幅值
|
|
|
|
+ Ce = Xp / Xr # 裕度指标
|
|
|
|
+
|
|
|
|
+ # 计算每个数据点的绝对值减去均值后的三次方,并求和
|
|
|
|
+ sum_abs_diff_cubed_3 = np.mean((np.abs(data) - mean_value) ** 3)
|
|
|
|
+ # 计算偏度指标
|
|
|
|
+ Cw = sum_abs_diff_cubed_3 / (Xrms ** 3)
|
|
|
|
+ # 计算每个数据点的绝对值减去均值后的四次方,并求和
|
|
|
|
+ sum_abs_diff_cubed_4 = np.mean((np.abs(data) - mean_value) ** 4)
|
|
|
|
+ # 计算峭度指标
|
|
|
|
+ Cq = sum_abs_diff_cubed_4 / (Xrms ** 4)
|
|
|
|
+ #
|
|
|
|
+
|
|
|
|
+ return {
|
|
|
|
+ "fs": self.fs, # 采样频率
|
|
|
|
+ "Mean": round(mean_value, 2), # 平均值
|
|
|
|
+ "Max": round(max_value, 2), # 最大值
|
|
|
|
+ "Min": round(min_value, 2), # 最小值
|
|
|
|
+ "Xrms": round(Xrms, 2), # 有效值
|
|
|
|
+ "Xp": round(Xp, 2), # 峰值
|
|
|
|
+ "If": round(If, 2), # 脉冲指标
|
|
|
|
+ "Cf": round(Cf, 2), # 峰值指标
|
|
|
|
+ "Sf": round(Sf, 2), # 波形指标
|
|
|
|
+ "Ce": round(Ce, 2), # 裕度指标
|
|
|
|
+ "Cw": round(Cw, 2), # 偏度指标
|
|
|
|
+ "Cq": round(Cq, 2), # 峭度指标
|
|
|
|
+ # velocity_rms :速度有效值
|
|
|
|
+ # time_stamp:时间戳
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for data in self.datas:
|
|
|
|
+ fs = int(self.data_filter['sampling_frequency'].iloc[0])
|
|
|
|
+ dt = 1 / fs
|
|
|
|
+ time_stamp = data['time_stamp'][0]
|
|
|
|
+ data = np.array(ast.literal_eval(data['mesure_data'][0]))
|
|
|
|
+
|
|
|
|
+ velocity = _integrate(data, dt)
|
|
|
|
+ velocity_rms = np.sqrt(np.mean(velocity ** 2))
|
|
|
|
+ stats = _calculate_stats(data)
|
|
|
|
+ stats["velocity_rms"] = round(velocity_rms, 2) # 速度有效值
|
|
|
|
+ stats["time_stamp"] = str(time_stamp) # 时间戳
|
|
|
|
+
|
|
|
|
+ all_stats.append(stats)
|
|
|
|
+
|
|
|
|
+ # df = pd.DataFrame(all_stats)
|
|
|
|
+ all_stats = json.dumps(all_stats, ensure_ascii=False)
|
|
|
|
+ return all_stats
|
|
|
|
+
|
|
|
|
+ def Characteristic_Frequency(self):
|
|
|
|
+ """提取轴承、齿轮等参数"""
|
|
|
|
+ # 1、从测点名称中提取部件名称(计算特征频率的部件)
|
|
|
|
+ str1 = self.mesure_point_name
|
|
|
|
+ str2 = ["main_bearing", "front_main_bearing", "rear_main_bearing", "generator_non_drive_end"]
|
|
|
|
+ for str in str2:
|
|
|
|
+ if str in str1:
|
|
|
|
+ parts = str
|
|
|
|
+ if parts == "front_main_bearing":
|
|
|
|
+ parts = "front_bearing"
|
|
|
|
+ elif parts == "rear_main_bearing":
|
|
|
|
+ parts = "rear_bearing"
|
|
|
|
+ # 2、连接233的数据库'energy_show',从表'wind_engine_group'查找风机编号'engine_code'对应的机型编号'mill_type_code'
|
|
|
|
+ engine = get_engine(dataBase.PLATFORM_DB)
|
|
|
|
+ engine_code = self.wind_code
|
|
|
|
+ df_sql2 = f"SELECT * FROM wind_engine_group where engine_code = {engine_code} "
|
|
|
|
+ df2 = pd.read_sql(df_sql2, engine)
|
|
|
|
+ mill_type_code = df2['mill_type_code'].iloc[0]
|
|
|
|
+ # 3、从表'unit_bearings'中通过机型编号'mill_type_code'查找部件'brand'、'model'的参数信息
|
|
|
|
+ df_sql3 = f"SELECT * FROM unit_bearings where mill_type_code = {mill_type_code} "
|
|
|
|
+ df3 = pd.read_sql(df_sql3, engine)
|
|
|
|
+ brand = 'front_bearing' + '_brand' # parts代替'front_bearing'
|
|
|
|
+ model = 'front_bearing' + '_model' # parts代替'front_bearing'
|
|
|
|
+ _brand = df3[brand].iloc[0]
|
|
|
|
+ _model = df3[model].iloc[0]
|
|
|
|
+
|
|
|
|
+ # 4、从表'unit_dict_brand_model'中通过'_brand'、'_model'查找部件的参数信息
|
|
|
|
+ df_sql4 = f"SELECT * FROM unit_dict_brand_model where manufacture = %s AND model_number = %s"
|
|
|
|
+ params = [(_brand, _model)]
|
|
|
|
+ df4 = pd.read_sql(df_sql4, engine, params=params)
|
|
|
|
+ if 'bearing' in parts:
|
|
|
|
+ n_rolls = df4['rolls_number'].iloc[0]
|
|
|
|
+ d_rolls = df4['rolls_diameter'].iloc[0]
|
|
|
|
+ D_diameter = df4['circle_diameter'].iloc[0]
|
|
|
|
+ theta_deg = df4['theta_deg'].iloc[0]
|
|
|
|
+ result = {
|
|
|
|
+ "type": 'bearing',
|
|
|
|
+ "n_rolls": round(n_rolls, 2),
|
|
|
|
+ "d_rolls": round(d_rolls, 2),
|
|
|
|
+ "D_diameter": round(D_diameter, 2),
|
|
|
|
+ "theta_deg": round(theta_deg, 2),
|
|
|
|
+ }
|
|
|
|
+ return result
|
|
|
|
+
|
|
|
|
+ def calculate_bearing_frequencies(self, n, d, D, theta_deg, rpm):
|
|
|
|
+ """
|
|
|
|
+ 计算轴承各部件特征频率
|
|
|
|
+
|
|
|
|
+ 参数:
|
|
|
|
+ n (int): 滚动体数量
|
|
|
|
+ d (float): 滚动体直径(单位:mm)
|
|
|
|
+ D (float): 轴承节圆直径(滚动体中心圆直径,单位:mm)
|
|
|
|
+ theta_deg (float): 接触角(单位:度)
|
|
|
|
+ rpm (float): 转速(转/分钟)
|
|
|
|
+
|
|
|
|
+ 返回:
|
|
|
|
+ dict: 包含各特征频率的字典(单位:Hz)
|
|
|
|
+ """
|
|
|
|
+ # 转换角度为弧度
|
|
|
|
+ theta = math.radians(theta_deg)
|
|
|
|
+
|
|
|
|
+ # 转换直径单位为米(保持单位一致性,实际计算中比值抵消单位影响)
|
|
|
|
+ # 注意:由于公式中使用的是比值,单位可以保持mm不需要转换
|
|
|
|
+ ratio = d / D
|
|
|
|
+
|
|
|
|
+ # 基础频率计算(转/秒)
|
|
|
|
+ f_r = rpm / 60.0
|
|
|
|
+
|
|
|
|
+ # 计算各特征频率
|
|
|
|
+ BPFI = n / 2 * (1 + ratio * math.cos(theta)) * f_r # 内圈故障频率
|
|
|
|
+ BPFO = n / 2 * (1 - ratio * math.cos(theta)) * f_r # 外圈故障频率
|
|
|
|
+ BSF = (D / (2 * d)) * (1 - (ratio ** 2) * (math.cos(theta) ** 2)) * f_r # 滚动体故障频率
|
|
|
|
+ FTF = 0.5 * (1 - ratio * math.cos(theta)) * f_r # 保持架故障频率
|
|
|
|
+
|
|
|
|
+ return {
|
|
|
|
+ "BPFI": round(BPFI, 2),
|
|
|
|
+ "BPFO": round(BPFO, 2),
|
|
|
|
+ "BSF": round(BSF, 2),
|
|
|
|
+ "FTF": round(FTF, 2),
|
|
|
|
+
|
|
|
|
+ }
|