|
|
@@ -0,0 +1,2006 @@
|
|
|
+
|
|
|
+"""
|
|
|
+@Time : 2024-03-04
|
|
|
+@Author : Wei
|
|
|
+@FileName: DiagnosisLib.py
|
|
|
+@Software: 故障诊断函数库
|
|
|
+
|
|
|
+"""
|
|
|
+
|
|
|
+import numpy as np
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+from math import pi
|
|
|
+from scipy import signal
|
|
|
+from scipy import interpolate
|
|
|
+import math
|
|
|
+
|
|
|
+class DiagnosisLib:
|
|
|
+
|
|
|
+ def __init__(self):
|
|
|
+ pass
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # 半带滤波器系数
|
|
|
+ def halfbandcoefficient(self):
|
|
|
+ halfbandcoefficient = np.array([0.00000063557331607068,0,-0.00000627255234261115,0,0.00002474955105003003,0,\
|
|
|
+ -0.00007140981582044673,0,0.00017237915446870680,0,-0.00036863887543283979,0,\
|
|
|
+ 0.00072039609678193576,0,-0.00131147951710543810,0,0.00225360507770744260,0,\
|
|
|
+ -0.00369069002024503300,0,0.00580407535380912750,0,-0.00882079299392407940,0,\
|
|
|
+ 0.01302944110367636400,0,-0.01881320502983020000,0,0.02672090662754737100,0,\
|
|
|
+ -0.03762627155576255700,0,0.05311294860790129200,0,-0.07653440360979835200,0,\
|
|
|
+ 0.11663131038150232000,0,-0.20562506738991029000,0,0.63439761518650584000,1,\
|
|
|
+ 0.63439761518650584000,0,-0.20562506738991029000,0,0.11663131038150232000,0,\
|
|
|
+ -0.07653440360979835200,0,0.05311294860790129200,0,-0.03762627155576255700,0,\
|
|
|
+ 0.02672090662754737100,0,-0.01881320502983020000,0,0.01302944110367636400,0,\
|
|
|
+ -0.00882079299392407940,0,0.00580407535380912750,0,-0.00369069002024503300,0,\
|
|
|
+ 0.00225360507770744260,0,-0.00131147951710543810,0,0.00072039609678193576,0,\
|
|
|
+ -0.00036863887543283979,0,0.00017237915446870680,0,-0.00007140981582044673,0,\
|
|
|
+ 0.00002474955105003003,0,-0.00000627255234261115,0,0.00000063557331607068])
|
|
|
+ return halfbandcoefficient
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # 计算时域波形均值
|
|
|
+ def Average(self,xTimeWave):
|
|
|
+ return sum(xTimeWave) / len(xTimeWave)
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # 计算时域波形xTimeWave的频谱
|
|
|
+ # fs是时域波形的采样频率,单位是Hz
|
|
|
+ # 调用代码须保证输入时域波形xTimeWave的数据点数为2的N幂
|
|
|
+ # 频谱计算默认采用汉宁窗
|
|
|
+ # 输出为频谱的x轴freq即频率,单位是Hz, 和频谱的y轴,单位是时域波形的幅值单位
|
|
|
+ # x轴和y轴的数据点数为输入时域波形xTimeWave数据点数的1/2.56倍+1,即1024点时域波形
|
|
|
+ # 输出频谱的x轴和y轴分别有401点数据,2048点时域波形时,输出频谱的x轴和y轴分别有801点数据。
|
|
|
+
|
|
|
+ def Spectrum(self,xTimeWave,fs):
|
|
|
+ DataLen = len(xTimeWave)
|
|
|
+ xSpec = abs(np.fft.fft((xTimeWave*np.hanning(DataLen))))/DataLen*4
|
|
|
+ freq = np.arange(0, fs / 2.56 + fs / DataLen, fs / DataLen)
|
|
|
+
|
|
|
+ return [freq, xSpec[0:int(DataLen/2.56)+1]]
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # 计算时域波形xTimeWave的幅值谱倒频谱
|
|
|
+ # fs是时域波形的采样频率,单位是Hz
|
|
|
+ # 调用代码须保证输入时域波形xTimeWave的数据点数为2的N幂
|
|
|
+ # 输出为倒谱的x轴quefrency,单位是秒,倒谱的幅值单位是dB
|
|
|
+ def Cepstrum(self,xTimeWave,fs):
|
|
|
+# cepstrum = np.abs(np.fft.ifft(np.log(np.absolute(np.fft.fft(xTimeWave)))))
|
|
|
+ cepstrum = 20*np.log((np.abs(np.fft.ifft(np.log(np.abs(np.fft.fft(xTimeWave))))))/0.1)
|
|
|
+ quefrency = np.array(range(len(xTimeWave)))/fs
|
|
|
+
|
|
|
+ return [quefrency,cepstrum]
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # 计算频谱xSpec的固定频率特征值,xSpec是频谱的y轴数组,其数据点数为101,201,401,801,1601,3201,6401,12801
|
|
|
+ # fMax是频谱的分析频宽,单位为Hz
|
|
|
+ # fTarget是特征频率的目标值,单位为Hz。比如轴的转频,齿轮啮合频率,水泵叶片通过频率等等
|
|
|
+ # fRange是特征频率的搜索范围,其输入值根据fRangeMode的不同值而不一样,
|
|
|
+ # fRangeMode可以赋值0或1,默认值是0。当fRangeMode = 0时,fRange的值是xx%, 比如 2%(实际输入为0.02) ,
|
|
|
+ # 此时搜索范围是 fTarge +/- fTarge*fRange/2。
|
|
|
+ # 当fRangeMode = 1时,fRange的值是频率值,比如2Hz,
|
|
|
+ # 此时的搜索范围就是 fTarge +/- fRange/2
|
|
|
+ # Detection是特征值的峰值(此时输入0),有效值(输入1),峰峰值(输入2)
|
|
|
+ # numHarmonics为谐波数,0代表不需要考虑谐波即只有特征频率的基频,1代表包括基频和2倍频,2代表包括基频和2、3倍频
|
|
|
+# def FixedFreqFeature(self,xSpec, fMax, fTarget, fRange, fRangeMode, Detection, numHarmonics):
|
|
|
+
|
|
|
+# # if fRangeMode == '百分比':
|
|
|
+# # fRange = fRange*fTarget
|
|
|
+# # if fRangeMode == '数值':
|
|
|
+# # fRange = fRange
|
|
|
+# if fRangeMode == 'Per':
|
|
|
+# fRange = fRange*fTarget
|
|
|
+# if fRangeMode == 'Num':
|
|
|
+# fRange = fRange
|
|
|
+
|
|
|
+# # print(fRange)
|
|
|
+# SpecResolution = fMax/(len(xSpec)-1)
|
|
|
+
|
|
|
+# index_SearchRangeMax = int(math.ceil((fTarget + fRange/2)/SpecResolution))
|
|
|
+# index_SearchRangeMin = int(math.floor((fTarget - fRange/2)/SpecResolution))
|
|
|
+
|
|
|
+# if index_SearchRangeMin < 3:
|
|
|
+# index_SearchRangeMin = 3
|
|
|
+
|
|
|
+# index_SearchRange = index_SearchRangeMax - index_SearchRangeMin
|
|
|
+
|
|
|
+# xArray = xSpec[index_SearchRangeMin:(index_SearchRangeMax+1)]
|
|
|
+
|
|
|
+# while((int(np.argmax(xArray))==0) or (int(np.argmax(xArray))==len(xArray)-1)):
|
|
|
+# index_SearchRangeMin = index_SearchRangeMin -1
|
|
|
+# index_SearchRange = index_SearchRange + 1
|
|
|
+# xArray = xSpec[int(index_SearchRangeMin-math.floor(index_SearchRange/2)):int(index_SearchRangeMin+math.ceil(index_SearchRange/2+1))]
|
|
|
+
|
|
|
+
|
|
|
+# ActualTargetFreq = self.FundamentalFreqActualValue(xArray, SpecResolution,index_SearchRangeMin)
|
|
|
+# # print(ActualTargetFreq)
|
|
|
+
|
|
|
+# featureValue = self.FreqFeatureValue(xSpec, SpecResolution, ActualTargetFreq, index_SearchRange, Detection, numHarmonics)
|
|
|
+
|
|
|
+# return featureValue
|
|
|
+
|
|
|
+
|
|
|
+ def FixedFreqFeature(self, xSpec, fMax, fTarget, fRange, fRangeMode, Detection, numHarmonics):
|
|
|
+ if fRangeMode == 'Per':
|
|
|
+ fRange = fRange * fTarget
|
|
|
+ if fRangeMode == 'Num':
|
|
|
+ fRange = fRange
|
|
|
+
|
|
|
+ SpecResolution = fMax / (len(xSpec) - 1)
|
|
|
+
|
|
|
+ index_SearchRangeMax = int(math.ceil((fTarget + fRange / 2) / SpecResolution))
|
|
|
+ index_SearchRangeMin = int(math.floor((fTarget - fRange / 2) / SpecResolution))
|
|
|
+
|
|
|
+ if index_SearchRangeMin < 3:
|
|
|
+ index_SearchRangeMin = 3
|
|
|
+
|
|
|
+ # 检查索引是否有效
|
|
|
+ if index_SearchRangeMin >= len(xSpec) or index_SearchRangeMax >= len(xSpec):
|
|
|
+ return [0] * (numHarmonics + 1) # 返回全零数组
|
|
|
+
|
|
|
+ index_SearchRange = index_SearchRangeMax - index_SearchRangeMin
|
|
|
+
|
|
|
+ # 检查搜索范围是否有效
|
|
|
+ if index_SearchRange <= 0:
|
|
|
+ return [0] * (numHarmonics + 1) # 返回全零数组
|
|
|
+
|
|
|
+ xArray = xSpec[index_SearchRangeMin:(index_SearchRangeMax + 1)]
|
|
|
+
|
|
|
+ # 检查 xArray 是否为空
|
|
|
+ if len(xArray) == 0:
|
|
|
+ return [0] * (numHarmonics + 1) # 返回全零数组
|
|
|
+
|
|
|
+ # 确保 xArray 不为空
|
|
|
+ while (int(np.argmax(xArray))) == 0 or (int(np.argmax(xArray)) == len(xArray) - 1):
|
|
|
+ index_SearchRangeMin = index_SearchRangeMin - 1
|
|
|
+ index_SearchRange = index_SearchRange + 1
|
|
|
+ xArray = xSpec[int(index_SearchRangeMin - math.floor(index_SearchRange / 2)):int(index_SearchRangeMin + math.ceil(index_SearchRange / 2 + 1))]
|
|
|
+
|
|
|
+ # 再次检查 xArray 是否为空
|
|
|
+ if len(xArray) == 0:
|
|
|
+ return [0] * (numHarmonics + 1) # 返回全零数组
|
|
|
+
|
|
|
+ ActualTargetFreq = self.FundamentalFreqActualValue(xArray, SpecResolution, index_SearchRangeMin)
|
|
|
+ featureValue = self.FreqFeatureValue(xSpec, SpecResolution, ActualTargetFreq, index_SearchRange, Detection, numHarmonics)
|
|
|
+
|
|
|
+ return featureValue
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # 该函数只用于内部调用,其调用函数为 FixedFreqFeature
|
|
|
+ def FundamentalFreqActualValue(self,xArray, SpecResolution, index_SearchRangeMin):
|
|
|
+ indexPeak = int(self.PeakFinderInArray(xArray))
|
|
|
+ indexCenter = int(indexPeak + index_SearchRangeMin)
|
|
|
+ ActualFundamentalFreq = self.FrequencyCompensation(indexCenter,xArray[indexPeak],xArray[indexPeak-1],xArray[indexPeak+1],SpecResolution)
|
|
|
+
|
|
|
+ return ActualFundamentalFreq
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # 该函数只用于内部调用,其调用函数为 FundamentalFreqActualValue
|
|
|
+ def PeakFinderInArray(self,xArray):
|
|
|
+ NoElements = len(xArray)
|
|
|
+ index_peak = int(np.argmin(xArray)) # initialize the peak index with the minimal value's index
|
|
|
+ peak = xArray[index_peak] # initialize the peak value with the minimal value
|
|
|
+
|
|
|
+ for i in range(0, NoElements-2):
|
|
|
+ if (xArray[i+1] > xArray[i]) and (xArray[i+1] > xArray[i+2]) and (xArray[i+1] > peak):
|
|
|
+ index_peak = i+1
|
|
|
+ peak = xArray[i+1]
|
|
|
+ return index_peak
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # 该函数只用于内部调用,其调用函数为 FundamentalFreqActualValue
|
|
|
+ def FrequencyCompensation(self,indexCenter, AmpCenter, AmpLeft, AmpRight, xSpecResolution):
|
|
|
+ if AmpRight >= AmpLeft:
|
|
|
+ delta_k = (2*AmpRight-AmpCenter)/(AmpRight+AmpCenter)
|
|
|
+ else:
|
|
|
+ delta_k = (AmpCenter-2*AmpLeft)/(AmpLeft+AmpCenter)
|
|
|
+
|
|
|
+ ActualFrequency = (indexCenter + delta_k)*xSpecResolution
|
|
|
+ return ActualFrequency
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # 该函数只用于内部调用,其调用函数为 FixedFreqFeature
|
|
|
+ def FreqFeatureValue(self,xSpec, SpecResolution, ActualTargetFreq, index_SearchRange, Detection, numHarmonics = 0):
|
|
|
+ sumation = 0
|
|
|
+# print(ActualTargetFreq)
|
|
|
+ featureValue = []
|
|
|
+ featureValue = [0 for i in range(numHarmonics+1)]
|
|
|
+ for i in range(0,numHarmonics+1):
|
|
|
+ index_i = int(round((i+1)*ActualTargetFreq/SpecResolution))
|
|
|
+
|
|
|
+ a = xSpec[int(index_i-math.floor(index_SearchRange/2)):int(index_i+math.ceil(index_SearchRange/2+1))]
|
|
|
+ while((int(np.argmax(a))==0) or (int(np.argmax(a))==len(a)-1)):
|
|
|
+ index_SearchRange = index_SearchRange + 2
|
|
|
+ a = xSpec[int(index_i-math.floor(index_SearchRange/2)):int(index_i+math.ceil(index_SearchRange/2+1))]
|
|
|
+
|
|
|
+ indexPeak = int(self.PeakFinderInArray(a) + index_i-math.floor(index_SearchRange/2))
|
|
|
+# print(int(index_i-math.floor(index_SearchRange/2)),indexPeak,int(index_i+math.ceil(index_SearchRange/2)))
|
|
|
+ for j in range(indexPeak-2,indexPeak+2+1):
|
|
|
+ sumation = sumation + xSpec[j]*xSpec[j]
|
|
|
+
|
|
|
+ featureValue[i] = np.sqrt(sumation/1.5)
|
|
|
+ sumation = 0
|
|
|
+# print(featureValue[i])
|
|
|
+
|
|
|
+ # if Detection == '峰值':
|
|
|
+ # pass
|
|
|
+ # if Detection == '有效值':
|
|
|
+ # featureValue = [x/math.sqrt(2) for x in featureValue]
|
|
|
+ # if Detection == '峰峰值':
|
|
|
+ # featureValue = [x*2 for x in featureValue]
|
|
|
+ if Detection == 'Peak':
|
|
|
+ pass
|
|
|
+ if Detection == 'RMS':
|
|
|
+ featureValue = [x/math.sqrt(2) for x in featureValue]
|
|
|
+ if Detection == 'PP':
|
|
|
+ featureValue = [x*2 for x in featureValue]
|
|
|
+ return featureValue
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # 计算频域积分
|
|
|
+ # xSpecOrig需要对其计算积分的频谱数组,其长度为:101,201,401,801,1601,3201,6401,12801
|
|
|
+ # fMax为频谱的分析频宽,单位为Hz
|
|
|
+ # fCut为计算积分的低频截止频率,单位为Hz
|
|
|
+ def FreqIntegration(self,xSpecOrig, fMax, fCut):
|
|
|
+ nLine = len(xSpecOrig) - 1
|
|
|
+ lineResolution = fMax / nLine
|
|
|
+ iStarting = int(math.floor(fCut / lineResolution))
|
|
|
+ if iStarting == 0:
|
|
|
+ iStarting = 1
|
|
|
+ xSpecOut = np.zeros(len(xSpecOrig))
|
|
|
+ for i in range(iStarting, len(xSpecOrig)):
|
|
|
+ xSpecOut[i] = xSpecOrig[i]/(2*pi*lineResolution*i)
|
|
|
+ return xSpecOut
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # 巴特沃斯高通滤波
|
|
|
+ # xTimeWave是时域波形数组, fs是采样频率,单位为Hz
|
|
|
+ # fco 为高通截止频率,单位为Hz
|
|
|
+ # Order为滤波器阶数,通常为偶数,2,4,6,8一般不超过8
|
|
|
+ def HighPassButter(self,xTimeWave, fs, fco, Order):
|
|
|
+ sos = signal.butter(Order, fco/(fs/2), 'hp', output='sos')
|
|
|
+ filtered = signal.sosfilt(sos, xTimeWave)
|
|
|
+ return filtered
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # 巴特沃斯低通滤波
|
|
|
+ # xTimeWave是时域波形数组, fs是采样频率,单位为Hz
|
|
|
+ # fco 为低通截止频率,单位为Hz
|
|
|
+ # Order为滤波器阶数,通常为偶数,2,4,6,8一般不超过8
|
|
|
+ def LowPassButter(self,xTimeWave, fs, fco, Order):
|
|
|
+ sos = signal.butter(Order, fco/(fs/2), 'lp', output='sos')
|
|
|
+ filtered = signal.sosfilt(sos, xTimeWave)
|
|
|
+ return filtered
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # 计算包络
|
|
|
+ # xTimeWave是时域波形数组
|
|
|
+ # DownSampleRate是降采样率,调用函数需提供此数值,其计算公式为
|
|
|
+ # 原始波形xTimeWave的分析频宽/包络后时域波形的分析频宽,比如原始波形分析频宽是10000Hz(采样频率是25600Hz),包络后时域
|
|
|
+ # 波形的分析频宽是1000Hz,那 DownSampleRate = 10000/1000 = 10
|
|
|
+ # Method是SKF的包络方法,还是PeakHold包络方法
|
|
|
+ def EnvLopInTime(self,xTimeWave, DownSampleRate, Method = "SKF"):
|
|
|
+ xOut = np.zeros(math.floor(len(xTimeWave)/DownSampleRate))
|
|
|
+ if Method == "SKF":
|
|
|
+ scale = 2.2
|
|
|
+ xTimeWave = np.absolute(scale*xTimeWave)
|
|
|
+ w = 1/(1.28*DownSampleRate)
|
|
|
+ Order = 4
|
|
|
+ sos = signal.butter(Order, w, 'lp', output='sos')
|
|
|
+ xTimeWave = signal.sosfilt(sos, xTimeWave)
|
|
|
+ xOut =xTimeWave[::DownSampleRate]
|
|
|
+ if Method == "PeakHold":
|
|
|
+ for i in range(0, len(xOut)):
|
|
|
+ xOut[i] = np.amax(np.absolute(xTimeWave[i*DownSampleRate:((i+1)*DownSampleRate-1)]))
|
|
|
+ return xOut - np.mean(xOut)
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # 内部调用函数
|
|
|
+ def DownSampleBy2(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave, 1, 2)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy4(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,4)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy5(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,5)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy8(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,8)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy10(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy20(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,2)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy40(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,4)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy50(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,5)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy80(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,8)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy100(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy200(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,2)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy400(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,4)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy500(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,5)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy800(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,8)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy1000(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy2000(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,2)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+ def DownSampleBy4000(self,xTimeWave):
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,10)
|
|
|
+ xTimeWave = signal.resample_poly(xTimeWave,1,4)
|
|
|
+ return xTimeWave
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ def DownSample(self, xTimeWave, fsIn, fsOut, nPointIn, nPointOut):
|
|
|
+#输入: xTimeWave: 时域波形数据
|
|
|
+# Fs: xTimeWave波形数据的采样频率(Hz)
|
|
|
+# fs: 降采样后时域波形数据的采样频率(Hz)
|
|
|
+# nPointIn: 输入波形的数据点数
|
|
|
+# nPointOut: 返回的波形的数据点数
|
|
|
+#
|
|
|
+#返回: 返回一个长度为nPointOut的时域波形数组
|
|
|
+
|
|
|
+
|
|
|
+ DownSampleRate = int(fsIn/fsOut)
|
|
|
+
|
|
|
+ if int(nPointIn/nPointOut) < DownSampleRate:
|
|
|
+ print('Input data length is not enough')
|
|
|
+ return -1
|
|
|
+
|
|
|
+ if DownSampleRate == 2:
|
|
|
+ return self.DownSampleBy2(xTimeWave[0:int(nPointOut*2)])
|
|
|
+
|
|
|
+ if DownSampleRate == 4:
|
|
|
+ return self.DownSampleBy4(xTimeWave[0:int(nPointOut*4)])
|
|
|
+
|
|
|
+ if DownSampleRate == 5:
|
|
|
+ return self.DownSampleBy5(xTimeWave[0:int(nPointOut*5)])
|
|
|
+
|
|
|
+ if DownSampleRate == 8:
|
|
|
+ return self.DownSampleBy8(xTimeWave[0:int(nPointOut*8)])
|
|
|
+
|
|
|
+ if DownSampleRate == 10:
|
|
|
+ return self.DownSampleBy10(xTimeWave[0:int(nPointOut*10)])
|
|
|
+
|
|
|
+ if DownSampleRate == 20:
|
|
|
+ return self.DownSampleBy20(xTimeWave[0:int(nPointOut*20)])
|
|
|
+
|
|
|
+ if DownSampleRate == 40:
|
|
|
+ return self.DownSampleBy40(xTimeWave[0:int(nPointOut*40)])
|
|
|
+
|
|
|
+ if DownSampleRate == 50:
|
|
|
+ return self.DownSampleBy50(xTimeWave[0:int(nPointOut*50)])
|
|
|
+
|
|
|
+ if DownSampleRate == 100:
|
|
|
+ return self.DownSampleBy100(xTimeWave[0:int(nPointOut*100)])
|
|
|
+
|
|
|
+ if DownSampleRate == 200:
|
|
|
+ return self.DownSampleBy200(xTimeWave[0:int(nPointOut*200)])
|
|
|
+
|
|
|
+ if DownSampleRate == 400:
|
|
|
+ return self.DownSampleBy400(xTimeWave[0:int(nPointOut*400)])
|
|
|
+
|
|
|
+ if DownSampleRate == 500:
|
|
|
+ return self.DownSampleBy500(xTimeWave[0:int(nPointOut*500)])
|
|
|
+
|
|
|
+ if DownSampleRate == 1000:
|
|
|
+ return self.DownSampleBy1000(xTimeWave[0:int(nPointOut*1000)])
|
|
|
+
|
|
|
+ if DownSampleRate == 2000:
|
|
|
+ return self.DownSampleBy2000(xTimeWave[0:int(nPointOut*2000)])
|
|
|
+
|
|
|
+ if DownSampleRate == 4000:
|
|
|
+ return self.DownSampleBy4000(xTimeWave[0:int(nPointOut*4000)])
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+
|
|
|
+ def OrderAnalysis(self, xTimeWave, Fs, xTimeSpeedPulse, nPulsePerRev, nRev, nLine, TransLevel, TransLevelPara):
|
|
|
+#输入: xTimeWave: 时域波形数据
|
|
|
+# Fs: xTimeWave波形数据的采样频率(Hz)
|
|
|
+# xTimeSpeedPulse: 相邻转速脉冲信号的时间间隔(s)
|
|
|
+# nPulsePerRev: 每周的脉冲个数
|
|
|
+# nRev: 阶次分析整周数(整周数必须是2的N次幂,比如:4、8、16、32、64、128、256、512等等)
|
|
|
+# nLine: 阶次频谱的谱线数(谱线数可选项为:100、200、400、800、1600、3200、6400)
|
|
|
+# TransLevel: 阶次分析轴与转速测量轴的转速等级关系,
|
|
|
+# 0:表示阶次分析轴与转速分析轴是同一根轴
|
|
|
+# 1:表示阶次分析轴与转速分析轴不在同一根轴上,有1次转速比变化
|
|
|
+# 2:表示阶次分析轴与转速分析轴不在同一根轴上,有2次转速比变化
|
|
|
+# 3:表示阶次分析轴与转速分析轴不在同一根轴上,有3次转速比变化, 以此类推
|
|
|
+# TransLevelPara: 齿轮齿数数组,
|
|
|
+# 当 TransLevel == 0 时,这个数组只有1个元素,可以是[0]
|
|
|
+# 当 TransLevel == 1 时,有一对齿轮啮合,2根轴。这个数组有2个元素,第一个元素是转速测量轴(1轴)上的齿轮齿数,
|
|
|
+# 第二个元素是与转速测量轴啮合(2轴)的齿轮的齿数,
|
|
|
+# 当 TransLevel == 2 时,有二对齿轮啮合,3根轴。这个数组有4个元素,第一个元素是转速测量轴(2轴)上的齿轮齿数,
|
|
|
+# 第二个元素是与转速测量轴啮合(2轴)的齿轮的齿数,第三个元素是2轴与下一级(3轴)啮合的齿轮的齿数,
|
|
|
+# 第四个元素是3轴与2轴啮合的齿轮的齿数。
|
|
|
+#返回: 等角度采样的角度轴坐标,等角度采样的波形,阶次谱的阶次轴坐标,阶次谱的幅值
|
|
|
+ nRevSpeedSensorShaft = int(len(xTimeSpeedPulse)/nPulsePerRev) # 计算转速测量轴的转速测量信号有多少个整周数
|
|
|
+ xTimeSpeedPulse = xTimeSpeedPulse[0:0+int(nRevSpeedSensorShaft*nPulsePerRev)] # 整周数以外多余的脉冲信号去掉
|
|
|
+ xTimeSpeedPerRevSpeedSensorShaft = np.sum(np.reshape(xTimeSpeedPulse,(nRevSpeedSensorShaft,nPulsePerRev)),axis = 1) # 计算转速测量轴每转一周的时间
|
|
|
+
|
|
|
+ if TransLevel == 0:
|
|
|
+ xTimeSpeedPerRevCurrentShaft = xTimeSpeedPerRevSpeedSensorShaft
|
|
|
+ xTimeSpeedPerRevCurrentShaft_ave = np.average(xTimeSpeedPerRevCurrentShaft) # 当转速测量轴就是阶次分析的轴时,转速脉冲可以直接使用
|
|
|
+ fMax_MAX = 1/xTimeSpeedPerRevCurrentShaft_ave*nLine/nRev
|
|
|
+ else:
|
|
|
+ xTemp = np.cumsum(xTimeSpeedPerRevSpeedSensorShaft) # 转速脉冲时间累积
|
|
|
+ xTemp = np.append(0,xTemp) # 添加起始点 # 当转速测量轴不是阶次分析轴时,传输脉冲信号必须转换到阶次分析轴上
|
|
|
+ for i in range (TransLevel):
|
|
|
+ up = TransLevelPara[i] # 转速测量轴齿轮齿数
|
|
|
+ down = TransLevelPara[i+1] # 啮合轴齿轮齿数
|
|
|
+ dataLength = int(len(xTemp)*up) # 转速测量轴增采样后的数据长度
|
|
|
+ flipelements = int(len(xTemp)*0.5) # 转速信号加长50%防止长度不够
|
|
|
+ extention = np.zeros(flipelements)
|
|
|
+ for j in range(flipelements): # 转速信号加长算法,以最后一点为对称中心
|
|
|
+ extention[j] = xTemp[-1]-(xTemp[-1-j-1]-xTemp[-1])
|
|
|
+ xTemp1 = np.append(xTemp,extention) # 转速信号加长后的转速脉冲时间累积
|
|
|
+ xTemp2 = np.zeros(xTemp1.size*(up),xTemp1.dtype)
|
|
|
+ xTemp2[::up] = xTemp1 # 脉冲时间累积信号增采样,增采样率为转速测量轴齿轮的齿数
|
|
|
+ # plt.figure(30)
|
|
|
+ # plt.plot(xTemp2)
|
|
|
+ #==============================================================
|
|
|
+ delta1 = 0.00000001
|
|
|
+ delta2 = 0.0000001
|
|
|
+ freq1 = 0.39/up
|
|
|
+ freq2 = 0.61/up
|
|
|
+ AA = np.matrix([[-4.278e-1,-4.761e-1,0],[-5.941e-1,7.114e-2,0],[-2.66e-3,5.309e-03,0]])
|
|
|
+ d1 = np.log10(delta1)
|
|
|
+ d2 = np.log10(delta2)
|
|
|
+ D = np.array([1,d1,d1*d1])*AA*np.array([[1],[d2],[d2*d2]])
|
|
|
+ bb = np.array([11.01217,0.51244])
|
|
|
+ fK = np.dot(np.array([1.0,(d1-d2)]),bb)
|
|
|
+ df = np.abs(freq2-freq1)
|
|
|
+ N = int(D[0]/df-fK*df+1)
|
|
|
+ if np.remainder(N,2) == 0:
|
|
|
+ N = N+1
|
|
|
+ upSampleFilterCoefficients = signal.remez(N, [0,0.39,0.61,up/2], [1,0],Hz = up,maxiter = 500)
|
|
|
+ # [freq, response] = signal.freqz(upSampleFilterCoefficients)
|
|
|
+ # ampl = np.abs(response)
|
|
|
+ # plt.figure(31)
|
|
|
+ # plt.plot(freq,ampl)
|
|
|
+ #==============================================================
|
|
|
+ groupDelay = int((len(upSampleFilterCoefficients)+1)/2)
|
|
|
+ xTemp3 = signal.convolve(xTemp2,upSampleFilterCoefficients)
|
|
|
+ xTemp4 = (xTemp3[groupDelay-1:groupDelay-1+dataLength])*up
|
|
|
+ plt.figure(30)
|
|
|
+ plt.plot(xTemp4)
|
|
|
+ xTemp5 = xTemp4[0::down]
|
|
|
+
|
|
|
+
|
|
|
+ xTimeSpeedPerRevCurrentShaft = np.diff(xTemp5)
|
|
|
+ xTimeSpeedPerRevCurrentShaft_ave = np.average(xTimeSpeedPerRevCurrentShaft) # 当转速测量轴就是阶次分析的轴时,转速脉冲可以直接使用
|
|
|
+ fMax_MAX = 1/xTimeSpeedPerRevCurrentShaft_ave*nLine/nRev
|
|
|
+ xTimeSpeedPerRevCurrentShaft_min = np.min(xTimeSpeedPerRevCurrentShaft) # 计算轴转得最快的一周的时间
|
|
|
+ fMax_MAX = 1/xTimeSpeedPerRevCurrentShaft_min*nLine/nRev # 根据最快的一周的时间得出阶次频谱最高分析频宽的频率
|
|
|
+ Order = 6
|
|
|
+ if fMax_MAX <= Fs/2.56:
|
|
|
+ xTimeWave = self.LowPassButter(xTimeWave, Fs, fMax_MAX, Order) # 低通滤波消除大于fMax_MAX的信号,然后才能做阶次分析
|
|
|
+
|
|
|
+ xTimeSpeedCurrentShaftCumulative = np.cumsum(xTimeSpeedPerRevCurrentShaft) # 计算轴每转一周所用时间的累积值
|
|
|
+ nVibDataPoint = nLine*2.56 # 计算时域波形点数
|
|
|
+ up = nVibDataPoint/nRev # 计算每周等角度采样点数
|
|
|
+# down = 1
|
|
|
+ halfbandWeight = self.halfbandcoefficient()
|
|
|
+
|
|
|
+ groupDelay = int((len(halfbandWeight)+1)/2)
|
|
|
+ numIteration = int(np.log10(up)/np.log10(2))
|
|
|
+ temp = np.append(0,xTimeSpeedCurrentShaftCumulative)
|
|
|
+ flipelements = int(len(temp)*0.5)
|
|
|
+ extention = np.zeros(flipelements)
|
|
|
+ for i in range(numIteration):
|
|
|
+ dataLength = int(len(temp)*2)
|
|
|
+ for j in range(flipelements):
|
|
|
+ extention[j] = temp[-1]-(temp[-1-j-1]-temp[-1])
|
|
|
+ temp1 = np.append(temp,extention)
|
|
|
+ temp2 = np.insert(temp1,np.arange(1,len(temp1),1),0)
|
|
|
+ temp3 = np.append(temp2,0)
|
|
|
+ temp4 = signal.convolve(temp3,halfbandWeight)
|
|
|
+ temp = temp4[groupDelay-1:groupDelay-1+dataLength]
|
|
|
+
|
|
|
+
|
|
|
+ xTimeNewSamplePoint = temp
|
|
|
+
|
|
|
+ flipelements = int(len(xTimeWave)*0.25)
|
|
|
+ extention = np.zeros(flipelements)
|
|
|
+ for j in range(flipelements):
|
|
|
+ extention[j] = xTimeWave[-1]-(xTimeWave[-1-j-1]-xTimeWave[-1])
|
|
|
+ xTimeWave = np.append(xTimeWave,extention)
|
|
|
+ xTimeSamplePoint = np.arange(0,len(xTimeWave)/Fs,1/Fs) # 计算输入波形的采样时间点
|
|
|
+# spl = UnivariateSpline(xTimeSamplePoint,xTimeWave)
|
|
|
+# Waveform = spl(xTimeNewSamplePoint)
|
|
|
+ fx = interpolate.interp1d(xTimeSamplePoint,xTimeWave,kind= 'cubic')
|
|
|
+ Waveform = fx(xTimeNewSamplePoint)
|
|
|
+ OrderWaveform = Waveform[0:int(nLine*2.56)]
|
|
|
+
|
|
|
+ ct = 360/(nLine*2.56/nRev)
|
|
|
+ orderTimeLine = np.arange(0,nLine*2.56*ct,ct)
|
|
|
+ fOT = nLine*2.56/nRev
|
|
|
+ fMax = fOT/2.56
|
|
|
+ fCut = 10*fMax/nLine
|
|
|
+ WinType = 0
|
|
|
+ AverageType = 0
|
|
|
+ OverLapType = 0
|
|
|
+ [f, xSpectrum, xSpectrumPhase] = self.Spectrum(OrderWaveform,nLine,fMax,fCut,WinType, AverageType ,OverLapType) # 计算插值函数
|
|
|
+ len(OrderWaveform)
|
|
|
+ return [orderTimeLine, OrderWaveform, f, xSpectrum]
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ def halfBandDesign(self, filterLength, transitionBand):
|
|
|
+ invalidInput = False
|
|
|
+
|
|
|
+ # check if integer
|
|
|
+ if (np.abs(filterLength - int(filterLength)) > 1e-10):
|
|
|
+ print('halfBandDesign.py: filterLength must be an integer')
|
|
|
+ invalidInput = True
|
|
|
+
|
|
|
+ # check if too small
|
|
|
+ if (filterLength < 7):
|
|
|
+ print('halfBandDesign.py: filterLength must be larger than 6')
|
|
|
+ invalidInput = True
|
|
|
+
|
|
|
+ # check if proper length
|
|
|
+ if (np.mod(filterLength+1, 4) != 0):
|
|
|
+ print('halfBandDesign.py: filterLength+1 must be divisble by 4')
|
|
|
+ invalidInput = True
|
|
|
+
|
|
|
+ # check range for transition band
|
|
|
+ if (transitionBand <= 0 or transitionBand >= 0.5):
|
|
|
+ print('halfBandDesign.py: transitionBand must be greater than 0 and less than 0.5')
|
|
|
+ invalidInput = True
|
|
|
+
|
|
|
+ if (invalidInput):
|
|
|
+ return []
|
|
|
+
|
|
|
+ else:
|
|
|
+ # design a half band filter with remez
|
|
|
+ cutoff = 0.25
|
|
|
+ fPass = cutoff - (transitionBand/2)
|
|
|
+ fStop = cutoff + (transitionBand/2)
|
|
|
+ fVec = [0, fPass, fStop, 0.5]
|
|
|
+ aVec = [1, 0]
|
|
|
+
|
|
|
+ weights = signal.remez(filterLength, fVec, aVec)
|
|
|
+
|
|
|
+ # force zero weights
|
|
|
+ zeroWeightIndicesHalf = np.arange(2, (filterLength-1)/2, 2, dtype=int)
|
|
|
+ zeroWeightIndicesNegative = np.concatenate((-zeroWeightIndicesHalf[::-1], zeroWeightIndicesHalf))
|
|
|
+ zeroWeightIndices = zeroWeightIndicesNegative - zeroWeightIndicesNegative[0] + 1
|
|
|
+
|
|
|
+ weights[zeroWeightIndices] = 0
|
|
|
+
|
|
|
+ return weights
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+
|
|
|
+ # def Pk_Search_BW(self):
|
|
|
+ # BW = 0.03
|
|
|
+ # return BW
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def gE_Bearing_Defect_HM_Threshhold(self,alert, danger, defectType):
|
|
|
+ gE_Bearing_Defect_HM_alert = np.zeros(5)
|
|
|
+ gE_Bearing_Defect_HM_danger = np.zeros(5)
|
|
|
+ if defectType == 'BPFO' :
|
|
|
+ gE_Bearing_Defect_HM_alert[0] = alert*0.167
|
|
|
+ gE_Bearing_Defect_HM_alert[1] = alert*0.131
|
|
|
+ gE_Bearing_Defect_HM_alert[2] = alert*0.098
|
|
|
+ gE_Bearing_Defect_HM_alert[3] = alert*0.089
|
|
|
+ gE_Bearing_Defect_HM_alert[4] = alert*0.082
|
|
|
+
|
|
|
+ gE_Bearing_Defect_HM_danger[0] = danger*0.167
|
|
|
+ gE_Bearing_Defect_HM_danger[1] = danger*0.131
|
|
|
+ gE_Bearing_Defect_HM_danger[2] = danger*0.098
|
|
|
+ gE_Bearing_Defect_HM_danger[3] = danger*0.089
|
|
|
+ gE_Bearing_Defect_HM_danger[4] = danger*0.082
|
|
|
+
|
|
|
+ return gE_Bearing_Defect_HM_alert, gE_Bearing_Defect_HM_danger
|
|
|
+
|
|
|
+ if defectType == 'BPFI':
|
|
|
+ gE_Bearing_Defect_HM_alert[0] = alert*0.088
|
|
|
+ gE_Bearing_Defect_HM_alert[1] = alert*0.064
|
|
|
+ gE_Bearing_Defect_HM_alert[2] = alert*0.056
|
|
|
+ gE_Bearing_Defect_HM_alert[3] = alert*0.035
|
|
|
+ gE_Bearing_Defect_HM_alert[4] = alert*0.024
|
|
|
+
|
|
|
+ gE_Bearing_Defect_HM_danger[0] = danger*0.088
|
|
|
+ gE_Bearing_Defect_HM_danger[1] = danger*0.064
|
|
|
+ gE_Bearing_Defect_HM_danger[2] = danger*0.056
|
|
|
+ gE_Bearing_Defect_HM_danger[3] = danger*0.035
|
|
|
+ gE_Bearing_Defect_HM_danger[4] = danger*0.024
|
|
|
+
|
|
|
+ return gE_Bearing_Defect_HM_alert, gE_Bearing_Defect_HM_danger
|
|
|
+
|
|
|
+ if defectType == 'BSF':
|
|
|
+ gE_Bearing_Defect_HM_alert[0] = alert*0.088
|
|
|
+ gE_Bearing_Defect_HM_alert[1] = alert*0.064
|
|
|
+ gE_Bearing_Defect_HM_alert[2] = alert*0.056
|
|
|
+ gE_Bearing_Defect_HM_alert[3] = alert*0.035
|
|
|
+ gE_Bearing_Defect_HM_alert[4] = alert*0.024
|
|
|
+
|
|
|
+ gE_Bearing_Defect_HM_danger[0] = danger*0.088
|
|
|
+ gE_Bearing_Defect_HM_danger[1] = danger*0.064
|
|
|
+ gE_Bearing_Defect_HM_danger[2] = danger*0.056
|
|
|
+ gE_Bearing_Defect_HM_danger[3] = danger*0.035
|
|
|
+ gE_Bearing_Defect_HM_danger[4] = danger*0.024
|
|
|
+
|
|
|
+
|
|
|
+ return gE_Bearing_Defect_HM_alert, gE_Bearing_Defect_HM_danger
|
|
|
+
|
|
|
+ if defectType == 'FTF':
|
|
|
+ gE_Bearing_Defect_HM_alert[0] = alert*0.088
|
|
|
+ gE_Bearing_Defect_HM_alert[1] = alert*0.064
|
|
|
+ gE_Bearing_Defect_HM_alert[2] = alert*0.056
|
|
|
+ gE_Bearing_Defect_HM_alert[3] = alert*0.035
|
|
|
+ gE_Bearing_Defect_HM_alert[4] = alert*0.024
|
|
|
+
|
|
|
+ gE_Bearing_Defect_HM_danger[0] = danger*0.088
|
|
|
+ gE_Bearing_Defect_HM_danger[1] = danger*0.064
|
|
|
+ gE_Bearing_Defect_HM_danger[2] = danger*0.056
|
|
|
+ gE_Bearing_Defect_HM_danger[3] = danger*0.035
|
|
|
+ gE_Bearing_Defect_HM_danger[4] = danger*0.024
|
|
|
+
|
|
|
+ return gE_Bearing_Defect_HM_alert, gE_Bearing_Defect_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Vel_Bearing_Defect_HM_Threshhold(self,alert, danger, defectType):
|
|
|
+ Vel_Bearing_Defect_HM_alert = np.zeros(5)
|
|
|
+ Vel_Bearing_Defect_HM_danger = np.zeros(5)
|
|
|
+ if defectType == 'BPFO':
|
|
|
+ Vel_Bearing_Defect_HM_alert[0] = alert*1.0
|
|
|
+ Vel_Bearing_Defect_HM_alert[1] = alert*1.0
|
|
|
+ Vel_Bearing_Defect_HM_alert[2] = alert*1.0
|
|
|
+ Vel_Bearing_Defect_HM_alert[3] = alert*1.0
|
|
|
+
|
|
|
+
|
|
|
+ Vel_Bearing_Defect_HM_danger[0] = danger*1.0
|
|
|
+ Vel_Bearing_Defect_HM_danger[1] = danger*1.0
|
|
|
+ Vel_Bearing_Defect_HM_danger[2] = danger*1.0
|
|
|
+ Vel_Bearing_Defect_HM_danger[3] = danger*1.0
|
|
|
+
|
|
|
+ return Vel_Bearing_Defect_HM_alert, Vel_Bearing_Defect_HM_danger
|
|
|
+
|
|
|
+ if defectType == 'BPFI':
|
|
|
+ Vel_Bearing_Defect_HM_alert[0] = alert*1.0
|
|
|
+ Vel_Bearing_Defect_HM_alert[1] = alert*1.0
|
|
|
+ Vel_Bearing_Defect_HM_alert[2] = alert*1.0
|
|
|
+ Vel_Bearing_Defect_HM_alert[3] = alert*1.0
|
|
|
+
|
|
|
+
|
|
|
+ Vel_Bearing_Defect_HM_danger[0] = danger*1.0
|
|
|
+ Vel_Bearing_Defect_HM_danger[1] = danger*1.0
|
|
|
+ Vel_Bearing_Defect_HM_danger[2] = danger*1.0
|
|
|
+ Vel_Bearing_Defect_HM_danger[3] = danger*1.0
|
|
|
+
|
|
|
+ return Vel_Bearing_Defect_HM_alert, Vel_Bearing_Defect_HM_danger
|
|
|
+
|
|
|
+ if defectType == 'BSF':
|
|
|
+ Vel_Bearing_Defect_HM_alert[0] = alert*1.0
|
|
|
+ Vel_Bearing_Defect_HM_alert[1] = alert*0.5
|
|
|
+ Vel_Bearing_Defect_HM_alert[2] = alert*0.5
|
|
|
+ Vel_Bearing_Defect_HM_alert[3] = alert*0.5
|
|
|
+
|
|
|
+
|
|
|
+ Vel_Bearing_Defect_HM_danger[0] = danger*1.0
|
|
|
+ Vel_Bearing_Defect_HM_danger[1] = danger*0.5
|
|
|
+ Vel_Bearing_Defect_HM_danger[2] = danger*0.5
|
|
|
+ Vel_Bearing_Defect_HM_danger[3] = danger*0.5
|
|
|
+
|
|
|
+ return Vel_Bearing_Defect_HM_alert, Vel_Bearing_Defect_HM_danger
|
|
|
+
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Vel_Bearing_RunningSpd_HM_Threshhold(self,alert, danger, defectType):
|
|
|
+ Vel_Bearing_RunningSpd_HM_alert = np.zeros(5)
|
|
|
+ Vel_Bearing_RunningSpd_HM_danger = np.zeros(5)
|
|
|
+
|
|
|
+ if defectType == 'BSF':
|
|
|
+ Vel_Bearing_RunningSpd_HM_alert[0] = alert*1.0
|
|
|
+ Vel_Bearing_RunningSpd_HM_alert[1] = alert*0.5
|
|
|
+ Vel_Bearing_RunningSpd_HM_alert[2] = alert*0.5
|
|
|
+ Vel_Bearing_RunningSpd_HM_alert[3] = alert*0.5
|
|
|
+ Vel_Bearing_RunningSpd_HM_alert[4] = alert*0.5
|
|
|
+
|
|
|
+ Vel_Bearing_RunningSpd_HM_danger[0] = danger*1.0
|
|
|
+ Vel_Bearing_RunningSpd_HM_danger[1] = danger*0.5
|
|
|
+ Vel_Bearing_RunningSpd_HM_danger[2] = danger*0.5
|
|
|
+ Vel_Bearing_RunningSpd_HM_danger[3] = danger*0.5
|
|
|
+ Vel_Bearing_RunningSpd_HM_danger[4] = danger*0.5
|
|
|
+
|
|
|
+ return Vel_Bearing_RunningSpd_HM_alert, Vel_Bearing_RunningSpd_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Vel_Unbalance_HM_Threshold(self,alert, danger):
|
|
|
+ Vel_Unbalance_HM_alert = np.zeros(5)
|
|
|
+ Vel_Unbalance_HM_danger = np.zeros(5)
|
|
|
+
|
|
|
+ Vel_Unbalance_HM_alert[0] = alert*1.0
|
|
|
+ Vel_Unbalance_HM_alert[1] = alert*0.5
|
|
|
+ Vel_Unbalance_HM_alert[2] = alert*0.5
|
|
|
+ Vel_Unbalance_HM_alert[3] = alert*0.5
|
|
|
+ Vel_Unbalance_HM_alert[4] = alert*0.5
|
|
|
+
|
|
|
+ Vel_Unbalance_HM_danger[0] = danger*1.0
|
|
|
+ Vel_Unbalance_HM_danger[1] = danger*0.5
|
|
|
+ Vel_Unbalance_HM_danger[2] = danger*0.5
|
|
|
+ Vel_Unbalance_HM_danger[3] = danger*0.5
|
|
|
+ Vel_Unbalance_HM_danger[4] = danger*0.5
|
|
|
+
|
|
|
+ return Vel_Unbalance_HM_alert, Vel_Unbalance_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Vel_Misalignment_HM_Threshold(self,alert, danger):
|
|
|
+ Vel_Misalignment_HM_alert = np.zeros(5)
|
|
|
+ Vel_Misalignment_HM_danger = np.zeros(5)
|
|
|
+
|
|
|
+ Vel_Misalignment_HM_alert[0] = alert*1.0
|
|
|
+ Vel_Misalignment_HM_alert[1] = alert*0.5
|
|
|
+ Vel_Misalignment_HM_alert[2] = alert*0.5
|
|
|
+ Vel_Misalignment_HM_alert[3] = alert*0.5
|
|
|
+ Vel_Misalignment_HM_alert[4] = alert*0.5
|
|
|
+
|
|
|
+ Vel_Misalignment_HM_danger[0] = danger*1.0
|
|
|
+ Vel_Misalignment_HM_danger[1] = danger*0.5
|
|
|
+ Vel_Misalignment_HM_danger[2] = danger*0.5
|
|
|
+ Vel_Misalignment_HM_danger[3] = danger*0.5
|
|
|
+ Vel_Misalignment_HM_danger[4] = danger*0.5
|
|
|
+
|
|
|
+ return Vel_Misalignment_HM_alert, Vel_Misalignment_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Vel_Looseness_HM_Threshold(self,alert, danger):
|
|
|
+ Vel_Looseness_HM_alert = np.zeros(5)
|
|
|
+ Vel_Looseness_HM_danger = np.zeros(5)
|
|
|
+
|
|
|
+ Vel_Looseness_HM_alert[0] = alert*1.0
|
|
|
+ Vel_Looseness_HM_alert[1] = alert*0.5
|
|
|
+ Vel_Looseness_HM_alert[2] = alert*0.5
|
|
|
+ Vel_Looseness_HM_alert[3] = alert*0.5
|
|
|
+ Vel_Looseness_HM_alert[4] = alert*0.5
|
|
|
+
|
|
|
+ Vel_Looseness_HM_danger[0] = danger*1.0
|
|
|
+ Vel_Looseness_HM_danger[1] = danger*0.5
|
|
|
+ Vel_Looseness_HM_danger[2] = danger*0.5
|
|
|
+ Vel_Looseness_HM_danger[3] = danger*0.5
|
|
|
+ Vel_Looseness_HM_danger[4] = danger*0.5
|
|
|
+
|
|
|
+ return Vel_Looseness_HM_alert, Vel_Looseness_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def gE_2XLF_HM_Threshhold(self,alert, danger):
|
|
|
+ gE_2XLF_HM_alert = np.zeros(5)
|
|
|
+ gE_2XLF_HM_danger = np.zeros(5)
|
|
|
+
|
|
|
+ gE_2XLF_HM_alert[0] = alert*0.167
|
|
|
+ gE_2XLF_HM_alert[1] = alert*0.131
|
|
|
+ gE_2XLF_HM_alert[2] = alert*0.098
|
|
|
+ gE_2XLF_HM_alert[3] = alert*0.089
|
|
|
+ gE_2XLF_HM_alert[4] = alert*0.082
|
|
|
+
|
|
|
+ gE_2XLF_HM_danger[0] = danger*0.167
|
|
|
+ gE_2XLF_HM_danger[1] = danger*0.131
|
|
|
+ gE_2XLF_HM_danger[2] = danger*0.098
|
|
|
+ gE_2XLF_HM_danger[3] = danger*0.089
|
|
|
+ gE_2XLF_HM_danger[4] = danger*0.082
|
|
|
+
|
|
|
+ return gE_2XLF_HM_alert, gE_2XLF_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Vel_2XLF_HM_Threshhold(self,alert, danger):
|
|
|
+ Vel_2XLF_HM_alert = np.zeros(1)
|
|
|
+ Vel_2XLF_HM_danger = np.zeros(1)
|
|
|
+
|
|
|
+ Vel_2XLF_HM_alert[0] = alert*1.0
|
|
|
+ Vel_2XLF_HM_danger[0] = danger*1.0
|
|
|
+
|
|
|
+ return Vel_2XLF_HM_alert, Vel_2XLF_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Acc_GMF_HM_Threshhold(self,alert, danger):
|
|
|
+ Acc_GMF_HM_alert = np.zeros(3)
|
|
|
+ Acc_GMF_HM_danger = np.zeros(3)
|
|
|
+
|
|
|
+ Acc_GMF_HM_alert[0] = alert*1.0
|
|
|
+ Acc_GMF_HM_alert[1] = alert*1.0
|
|
|
+ Acc_GMF_HM_alert[2] = alert*1.0
|
|
|
+
|
|
|
+ Acc_GMF_HM_danger[0] = danger*1.0
|
|
|
+ Acc_GMF_HM_danger[1] = danger*1.0
|
|
|
+ Acc_GMF_HM_danger[2] = danger*1.0
|
|
|
+
|
|
|
+ return Acc_GMF_HM_alert, Acc_GMF_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Vel_GMF_HM_Threshhold(self,alert, danger):
|
|
|
+ Vel_GMF_HM_alert = np.zeros(3)
|
|
|
+ Vel_GMF_HM_danger = np.zeros(3)
|
|
|
+
|
|
|
+ Vel_GMF_HM_alert[0] = alert*1.0
|
|
|
+ Vel_GMF_HM_alert[1] = alert*1.0
|
|
|
+ Vel_GMF_HM_alert[2] = alert*1.0
|
|
|
+
|
|
|
+ Vel_GMF_HM_danger[0] = danger*1.0
|
|
|
+ Vel_GMF_HM_danger[1] = danger*1.0
|
|
|
+ Vel_GMF_HM_danger[2] = danger*1.0
|
|
|
+
|
|
|
+ return Vel_GMF_HM_alert, Vel_GMF_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def gE_GMF_HM_Threshhold(self,alert, danger):
|
|
|
+ gE_GMF_HM_alert = np.zeros(3)
|
|
|
+ gE_GMF_HM_danger = np.zeros(3)
|
|
|
+
|
|
|
+ gE_GMF_HM_alert[0] = alert*0.167
|
|
|
+ gE_GMF_HM_alert[1] = alert*0.131
|
|
|
+ gE_GMF_HM_alert[2] = alert*0.098
|
|
|
+
|
|
|
+ gE_GMF_HM_danger[0] = danger*0.167
|
|
|
+ gE_GMF_HM_danger[1] = danger*0.131
|
|
|
+ gE_GMF_HM_danger[2] = danger*0.098
|
|
|
+
|
|
|
+ return gE_GMF_HM_alert, gE_GMF_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def gE_GTIF_HM_Threshhold(self,alert, danger):
|
|
|
+ gE_GTIF_HM_alert = np.zeros(5)
|
|
|
+ gE_GTIF_HM_danger = np.zeros(5)
|
|
|
+
|
|
|
+ gE_GTIF_HM_alert[0] = alert*0.167
|
|
|
+ gE_GTIF_HM_alert[1] = alert*0.131
|
|
|
+ gE_GTIF_HM_alert[2] = alert*0.098
|
|
|
+ gE_GTIF_HM_alert[3] = alert*0.089
|
|
|
+ gE_GTIF_HM_alert[4] = alert*0.082
|
|
|
+
|
|
|
+ gE_GTIF_HM_danger[0] = danger*0.167
|
|
|
+ gE_GTIF_HM_danger[1] = danger*0.131
|
|
|
+ gE_GTIF_HM_danger[2] = danger*0.098
|
|
|
+ gE_GTIF_HM_danger[3] = danger*0.089
|
|
|
+ gE_GTIF_HM_danger[4] = danger*0.082
|
|
|
+
|
|
|
+ return gE_GTIF_HM_alert, gE_GTIF_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Vel_VPF_HM_Threshhold(self,alert, danger):
|
|
|
+ Vel_VPF_HM_alert = np.zeros(2)
|
|
|
+ Vel_VPF_HM_danger = np.zeros(2)
|
|
|
+
|
|
|
+ Vel_VPF_HM_alert[0] = alert*1.0
|
|
|
+ Vel_VPF_HM_alert[1] = alert*1.0
|
|
|
+
|
|
|
+ Vel_VPF_HM_danger[0] = danger*1.0
|
|
|
+ Vel_VPF_HM_danger[1] = danger*1.0
|
|
|
+
|
|
|
+ return Vel_VPF_HM_alert, Vel_VPF_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Vel_BTF_HM_Threshhold(self,alert, danger):
|
|
|
+ Vel_BTF_HM_alert = np.zeros(2)
|
|
|
+ Vel_BTF_HM_danger = np.zeros(2)
|
|
|
+
|
|
|
+ Vel_BTF_HM_alert[0] = alert*1.0
|
|
|
+ Vel_BTF_HM_alert[1] = alert*1.0
|
|
|
+
|
|
|
+ Vel_BTF_HM_danger[0] = danger*1.0
|
|
|
+ Vel_BTF_HM_danger[1] = danger*1.0
|
|
|
+
|
|
|
+ return Vel_BTF_HM_alert, Vel_BTF_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Vel_SHF_HM_Threshhold(self,alert, danger):
|
|
|
+ Vel_SHF_HM_alert = np.zeros(1)
|
|
|
+ Vel_SHF_HM_danger = np.zeros(1)
|
|
|
+
|
|
|
+ Vel_SHF_HM_alert[0] = alert*1.0
|
|
|
+
|
|
|
+ Vel_SHF_HM_danger[0] = danger*1.0
|
|
|
+
|
|
|
+ return Vel_SHF_HM_alert, Vel_SHF_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Vel_RBPF_HM_Threshhold(self,alert, danger):
|
|
|
+ Vel_RBPF_HM_alert = np.zeros(1)
|
|
|
+ Vel_RBPF_HM_danger = np.zeros(1)
|
|
|
+
|
|
|
+ Vel_RBPF_HM_alert[0] = alert*1.0
|
|
|
+
|
|
|
+ Vel_RBPF_HM_danger[0] = danger*1.0
|
|
|
+
|
|
|
+ return Vel_RBPF_HM_alert, Vel_RBPF_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Acc_RBPF_HM_Threshhold(self,alert, danger):
|
|
|
+ Acc_RBPF_HM_alert = np.zeros(1)
|
|
|
+ Acc_RBPF_HM_danger = np.zeros(1)
|
|
|
+
|
|
|
+ Acc_RBPF_HM_alert[0] = alert*1.0
|
|
|
+
|
|
|
+ Acc_RBPF_HM_danger[0] = danger*1.0
|
|
|
+
|
|
|
+ return Acc_RBPF_HM_alert, Acc_RBPF_HM_danger
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Bearing_Fault_Diag(self,gE_Bearing_Defect_HM, Vel_Bearing_Defect_HM, Vel_RunningSpd_HM, gE_alert, gE_danger, Vel_alert, Vel_danger, defectType):
|
|
|
+ BrDefDetection = False
|
|
|
+ BrDefSev = 0
|
|
|
+ gE_Bearing_Defect_HM_alert = np.zeros(5)
|
|
|
+ gE_Bearing_Defect_HM_danger = np.zeros(5)
|
|
|
+ Vel_Bearing_Defect_HM_alert = np.zeros(5)
|
|
|
+ Vel_Bearing_Defect_HM_danger = np.zeros(5)
|
|
|
+ Vel_Bearing_RunningSpd_HM_alert = np.zeros(5)
|
|
|
+ Vel_Bearing_RunningSpd_HM_danger = np.zeros(5)
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+# Check bearing outer race and inner race defect
|
|
|
+
|
|
|
+ if (defectType == 'BPFO') or (defectType == 'BPFI'):
|
|
|
+ [gE_Bearing_Defect_HM_alert, gE_Bearing_Defect_HM_danger] = self.gE_Bearing_Defect_HM_Threshhold(gE_alert, gE_danger, defectType)
|
|
|
+# [Vel_Bearing_RunningSpd_HM_alert, Vel_Bearing_RunningSpd_HM_danger] = self.Vel_Bearing_RunningSpd_HM_Threshhold(Vel_alert, Vel_danger, defectType)
|
|
|
+ [Vel_Bearing_Defect_HM_alert, Vel_Bearing_Defect_HM_danger] = self.Vel_Bearing_Defect_HM_Threshhold(Vel_alert, Vel_danger, defectType)
|
|
|
+
|
|
|
+# Bearing outer race frequency, severe, confirmed by velocity spectrum, CF = 8, Severity = 10
|
|
|
+# AND
|
|
|
+# OR
|
|
|
+# ge_BPFO_1 >= Alert
|
|
|
+# ge_BPFO_2 >= Alert
|
|
|
+# OR
|
|
|
+# Vel_BPFO_1 >= Alert
|
|
|
+# Vel_BPFO_2 >= Alert
|
|
|
+#
|
|
|
+# above logics apply to BPFI as well
|
|
|
+
|
|
|
+ if (gE_Bearing_Defect_HM[0] >= gE_Bearing_Defect_HM_alert[0] or gE_Bearing_Defect_HM[1] >= gE_Bearing_Defect_HM_alert[1]) and \
|
|
|
+ (Vel_Bearing_Defect_HM[0] >= Vel_Bearing_Defect_HM_alert[0] or Vel_Bearing_Defect_HM[1] >= Vel_Bearing_Defect_HM_alert[1]):
|
|
|
+ BrDefDetection = True
|
|
|
+ BrDefSev = 8
|
|
|
+
|
|
|
+ return BrDefDetection, BrDefSev
|
|
|
+
|
|
|
+# Bearing outer race frequency, severe, no confirming by velocity spectrum, CF = 6, Severity = 10
|
|
|
+# AND
|
|
|
+# OR
|
|
|
+# AND
|
|
|
+# ge_BPFO_1 >= Danger
|
|
|
+# ge_BPFO_2 >= Alert
|
|
|
+# AND
|
|
|
+# gE_BPFO_1 >= Danger
|
|
|
+# gE_BPFO_3 >= Alert
|
|
|
+# AND
|
|
|
+# gE_BPFO_1 >= Danger
|
|
|
+# gE_BPFO_4 >= Alert
|
|
|
+# NOR
|
|
|
+# Vel_BPFO_1 >= Alert
|
|
|
+# Vel_BPFO_2 >= Alert
|
|
|
+#
|
|
|
+# above logics apply to BPFI as well
|
|
|
+
|
|
|
+ else:
|
|
|
+ if ((gE_Bearing_Defect_HM[0] >= gE_Bearing_Defect_HM_danger[0] and gE_Bearing_Defect_HM[1] >= gE_Bearing_Defect_HM_alert[1]) or \
|
|
|
+ (gE_Bearing_Defect_HM[0] >= gE_Bearing_Defect_HM_danger[0] and gE_Bearing_Defect_HM[2] >= gE_Bearing_Defect_HM_alert[2]) or \
|
|
|
+ (gE_Bearing_Defect_HM[0] >= gE_Bearing_Defect_HM_danger[0] and gE_Bearing_Defect_HM[3] >= gE_Bearing_Defect_HM_alert[3])) and \
|
|
|
+ (not(Vel_Bearing_Defect_HM[0] >= Vel_Bearing_Defect_HM_alert[0] or Vel_Bearing_Defect_HM[1] >= Vel_Bearing_Defect_HM_alert[1])):
|
|
|
+ BrDefDetection = True
|
|
|
+ BrDefSev = 6
|
|
|
+ return BrDefDetection, BrDefSev
|
|
|
+
|
|
|
+# Bearing outer race frequency, severe, not confirmed by gE spectrum, CF = 6, Severity = 10
|
|
|
+# OR
|
|
|
+# Vel_BPFO_1 >= Alert
|
|
|
+# Vel_BPFO_2 >= Alert
|
|
|
+#
|
|
|
+# above logics apply to BPFI as well
|
|
|
+
|
|
|
+ else:
|
|
|
+ if (Vel_Bearing_Defect_HM[0] >= Vel_Bearing_Defect_HM_alert[0] or Vel_Bearing_Defect_HM[1] >= Vel_Bearing_Defect_HM_alert[1]):
|
|
|
+ BrDefDetection = True
|
|
|
+ BrDefSev = 6
|
|
|
+
|
|
|
+ return BrDefDetection, BrDefSev
|
|
|
+
|
|
|
+# Bearing outer race frequency, moderate, several defect peaks, no confirming by velocity spectrum, CF = 5, Severity = 5
|
|
|
+# AND
|
|
|
+# OR
|
|
|
+# AND
|
|
|
+# ge_BPFO_1 >= Alert
|
|
|
+# ge_BPFO_2 >= Alert
|
|
|
+# AND
|
|
|
+# gE_BPFO_1 >= Alert
|
|
|
+# gE_BPFO_3 >= Alert
|
|
|
+# AND
|
|
|
+# gE_BPFO_1 >= Alert
|
|
|
+# gE_BPFO_4 >= Alert
|
|
|
+# NOR
|
|
|
+# Vel_BPFO_1 >= Alert
|
|
|
+# Vel_BPFO_2 >= Alert
|
|
|
+#
|
|
|
+# above logics apply to BPFI as well
|
|
|
+
|
|
|
+ else:
|
|
|
+ if ((gE_Bearing_Defect_HM[0] >= gE_Bearing_Defect_HM_alert[0] and gE_Bearing_Defect_HM[1] >= gE_Bearing_Defect_HM_alert[1]) or \
|
|
|
+ (gE_Bearing_Defect_HM[0] >= gE_Bearing_Defect_HM_alert[0] and gE_Bearing_Defect_HM[2] >= gE_Bearing_Defect_HM_alert[2]) or \
|
|
|
+ (gE_Bearing_Defect_HM[0] >= gE_Bearing_Defect_HM_alert[0] and gE_Bearing_Defect_HM[3] >= gE_Bearing_Defect_HM_alert[3])) and \
|
|
|
+ (not(Vel_Bearing_Defect_HM[0] >= Vel_Bearing_Defect_HM_alert[0] or Vel_Bearing_Defect_HM[1] >= Vel_Bearing_Defect_HM_alert[1])):
|
|
|
+ BrDefDetection = True
|
|
|
+ BrDefSev = 3
|
|
|
+ return BrDefDetection, BrDefSev
|
|
|
+
|
|
|
+# Bearing outer race frequency, suspect, only 1x defect peak evaluated, CF = 3, Severity = 5
|
|
|
+# ge_BPFO_1 >= Alert
|
|
|
+#
|
|
|
+# above logics apply to BPFI as well
|
|
|
+
|
|
|
+ else:
|
|
|
+ if (gE_Bearing_Defect_HM[0] >= gE_Bearing_Defect_HM_alert[0]):
|
|
|
+ BrDefDetection = True
|
|
|
+ BrDefSev = 1
|
|
|
+ return BrDefDetection, BrDefSev
|
|
|
+
|
|
|
+ return BrDefDetection, BrDefSev
|
|
|
+###############################################################################
|
|
|
+# Check bearing rolling element defect
|
|
|
+
|
|
|
+
|
|
|
+ if defectType == 'BSF':
|
|
|
+ [gE_Bearing_Defect_HM_alert, gE_Bearing_Defect_HM_danger] = self.gE_Bearing_Defect_HM_Threshhold(gE_alert, gE_danger, defectType)
|
|
|
+ [Vel_Bearing_RunningSpd_HM_alert, Vel_Bearing_RunningSpd_HM_danger] = self.Vel_Bearing_RunningSpd_HM_Threshhold(Vel_alert, Vel_danger, defectType)
|
|
|
+ [Vel_Bearing_Defect_HM_alert, Vel_Bearing_Defect_HM_danger] = self.Vel_Bearing_Defect_HM_Threshhold(Vel_alert, Vel_danger, defectType)
|
|
|
+# print(Vel_Bearing_RunningSpd_HM_alert, Vel_Bearing_RunningSpd_HM_danger)
|
|
|
+# Bearing rolling element frequency, severe, CF = 9, Severity = 10
|
|
|
+# AND
|
|
|
+# AND
|
|
|
+# Vel_BSF_2 >= Alert
|
|
|
+# Vel_BSF_4 >= Alert
|
|
|
+# NOR
|
|
|
+# Vel_RS_2 >= Alert
|
|
|
+# Vel_RS_3 >= Alert
|
|
|
+# Vel_RS_4 >= Alert
|
|
|
+# Vel_RS_5 >= Alert
|
|
|
+
|
|
|
+ if (Vel_Bearing_Defect_HM[1] >= Vel_Bearing_Defect_HM_alert[1] and Vel_Bearing_Defect_HM[3] >= Vel_Bearing_Defect_HM_alert[3]) and \
|
|
|
+ (not(Vel_RunningSpd_HM[1] >= Vel_Bearing_RunningSpd_HM_alert[1] or Vel_RunningSpd_HM[2] >= Vel_Bearing_RunningSpd_HM_alert[2] or \
|
|
|
+ Vel_RunningSpd_HM[3] >= Vel_Bearing_RunningSpd_HM_alert[3] or Vel_RunningSpd_HM[4] >= Vel_Bearing_RunningSpd_HM_alert[4])):
|
|
|
+ BrDefDetection = True
|
|
|
+ BrDefSev = 9
|
|
|
+ return BrDefDetection, BrDefSev
|
|
|
+
|
|
|
+# Bearing rolling element frequency, moderate, CF = 9, Severity = 5
|
|
|
+# AND
|
|
|
+# AND
|
|
|
+# gE_BSF_1 >= Alert
|
|
|
+# NOR
|
|
|
+# Vel_BSF_2 >= Alert
|
|
|
+# Vel_BSF_4 >= Alert
|
|
|
+# Vel_RS_2 >= Alert
|
|
|
+# Vel_RS_3 >= Alert
|
|
|
+# Vel_RS_4 >= Alert
|
|
|
+# Vel_RS_5 >= Alert
|
|
|
+
|
|
|
+ else:
|
|
|
+ if gE_Bearing_Defect_HM[0] >= gE_Bearing_Defect_HM_alert[0] and \
|
|
|
+ (not(Vel_Bearing_Defect_HM[1] >= Vel_Bearing_Defect_HM_alert[1] or Vel_Bearing_Defect_HM[3] >= Vel_Bearing_Defect_HM_alert[3] or \
|
|
|
+ Vel_RunningSpd_HM[1] >= Vel_Bearing_RunningSpd_HM_alert[1] or Vel_RunningSpd_HM[2] >= Vel_Bearing_RunningSpd_HM_alert[2] or \
|
|
|
+ Vel_RunningSpd_HM[3] >= Vel_Bearing_RunningSpd_HM_alert[3] or Vel_RunningSpd_HM[4] >= Vel_Bearing_RunningSpd_HM_alert[4])):
|
|
|
+ BrDefDetection = True
|
|
|
+ BrDefSev = 5
|
|
|
+ return BrDefDetection, BrDefSev
|
|
|
+
|
|
|
+# Bearing rolling element frequency, suspect, CF = 3, Severity = 5
|
|
|
+# AND
|
|
|
+# OR
|
|
|
+# gE_BSF_1 = Alert
|
|
|
+# gE_BSF_2 = Alert
|
|
|
+# gE_BSF_4 = Alert
|
|
|
+# NOR
|
|
|
+# gE_BSF_1 = Danger
|
|
|
+# gE_BSF_2 = Danger
|
|
|
+# gE_BSF_4 = Danger
|
|
|
+# Vel_BSF_2 >= Alert
|
|
|
+# Vel_BSF_4 >= Alert
|
|
|
+# Vel_RS_2 >= Alert
|
|
|
+# Vel_RS_3 >= Alert
|
|
|
+# Vel_RS_4 >= Alert
|
|
|
+# Vel_RS_5 >= Alert
|
|
|
+
|
|
|
+ else:
|
|
|
+ if ((gE_Bearing_Defect_HM[0] >= gE_Bearing_Defect_HM_alert[0] and gE_Bearing_Defect_HM[0] < gE_Bearing_Defect_HM_danger[0]) or \
|
|
|
+ (gE_Bearing_Defect_HM[1] >= gE_Bearing_Defect_HM_alert[1] and gE_Bearing_Defect_HM[1] < gE_Bearing_Defect_HM_danger[1]) or \
|
|
|
+ (gE_Bearing_Defect_HM[3] >= gE_Bearing_Defect_HM_alert[3] and gE_Bearing_Defect_HM[3] < gE_Bearing_Defect_HM_danger[3] )) and \
|
|
|
+ (not(gE_Bearing_Defect_HM[0] >= gE_Bearing_Defect_HM_danger[0] or gE_Bearing_Defect_HM[1] >= gE_Bearing_Defect_HM_danger[1] or gE_Bearing_Defect_HM[3] >= gE_Bearing_Defect_HM_danger[3] or \
|
|
|
+ Vel_Bearing_Defect_HM[0] >= Vel_Bearing_Defect_HM_alert[0] or Vel_Bearing_Defect_HM[1] >= Vel_Bearing_Defect_HM_alert[1] or \
|
|
|
+ Vel_RunningSpd_HM[1] >= Vel_Bearing_RunningSpd_HM_alert[1] or Vel_RunningSpd_HM[2] >= Vel_Bearing_RunningSpd_HM_alert[2] or \
|
|
|
+ Vel_RunningSpd_HM[3] >= Vel_Bearing_RunningSpd_HM_alert[3] or Vel_RunningSpd_HM[4] >= Vel_Bearing_RunningSpd_HM_alert[4])):
|
|
|
+ BrDefDetection = True
|
|
|
+ BrDefSev = 1
|
|
|
+
|
|
|
+ return BrDefDetection, BrDefSev
|
|
|
+
|
|
|
+ return BrDefDetection, BrDefSev
|
|
|
+###############################################################################
|
|
|
+# Check bearing cage defect
|
|
|
+
|
|
|
+ if defectType == 'FTF':
|
|
|
+ [gE_Bearing_Defect_HM_alert, gE_Bearing_Defect_HM_danger] = self.gE_Bearing_Defect_HM_Threshhold(gE_alert, gE_danger, defectType)
|
|
|
+
|
|
|
+# Bearing cage frequency, severe, CF = 6, Severity = 10
|
|
|
+# OR
|
|
|
+# gE_CG_1 >= Danger
|
|
|
+# gE_CG_2 >= Danger
|
|
|
+
|
|
|
+ if gE_Bearing_Defect_HM[0] >= gE_Bearing_Defect_HM_danger[0] or gE_Bearing_Defect_HM[1] >= gE_Bearing_Defect_HM_danger[1]:
|
|
|
+ BrDefDetection = True
|
|
|
+ BrDefSev = 6
|
|
|
+
|
|
|
+ return BrDefDetection, BrDefSev
|
|
|
+
|
|
|
+# Bearing cage frequency, moderate, CF = 5, Severity = 5
|
|
|
+# AND
|
|
|
+# OR
|
|
|
+# gE_CG_1 >= Alert
|
|
|
+# gE_CG_2 >= Alert
|
|
|
+# NOR
|
|
|
+# gE_CG_1 = Danger
|
|
|
+# gE_CG_2 = Danger
|
|
|
+
|
|
|
+ else:
|
|
|
+ if (gE_Bearing_Defect_HM[0] >= gE_Bearing_Defect_HM_alert[0] or gE_Bearing_Defect_HM[1] >= gE_Bearing_Defect_HM_alert[1]) and \
|
|
|
+ (not(gE_Bearing_Defect_HM[0] >= gE_Bearing_Defect_HM_danger[0] or gE_Bearing_Defect_HM[1] >= gE_Bearing_Defect_HM_danger[1])):
|
|
|
+ BrDefDetection = True
|
|
|
+ BrDefSev = 3
|
|
|
+
|
|
|
+ return BrDefDetection, BrDefSev
|
|
|
+
|
|
|
+ return BrDefDetection, BrDefSev
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def RunningSpd_Symptom_Rule(self,Vel_RunningSpd_HM, Vel_RunningSpd_HM_alert, Vel_RunningSpd_HM_danger):
|
|
|
+ RPM1_MOD = False
|
|
|
+ RPM1_SEV = False
|
|
|
+ RPM2_MOD = False
|
|
|
+ RPM2_SEV = False
|
|
|
+ RPM345_MOD = False
|
|
|
+ RPM345_SEV = False
|
|
|
+
|
|
|
+# 1x RPM, Moderate, CF=8, Severity = 5
|
|
|
+# AND
|
|
|
+# Vel_RS_1 = Alert
|
|
|
+
|
|
|
+ if Vel_RunningSpd_HM[0] >= Vel_RunningSpd_HM_alert[0] and Vel_RunningSpd_HM[0] < Vel_RunningSpd_HM_danger[0]:
|
|
|
+ RPM1_MOD = True
|
|
|
+
|
|
|
+# 1x RPM, Severe, CF=8, Severity = 10
|
|
|
+# AND
|
|
|
+# Vel_RS_1 = Danger
|
|
|
+
|
|
|
+ if Vel_RunningSpd_HM[0] >= Vel_RunningSpd_HM_danger[0]:
|
|
|
+ RPM1_SEV = True
|
|
|
+
|
|
|
+# 2x RPM, Moderate, CF=8, Severity = 5
|
|
|
+# AND
|
|
|
+# Vel_RS_2 = Alert
|
|
|
+
|
|
|
+ if Vel_RunningSpd_HM[1] >= Vel_RunningSpd_HM_alert[1] and Vel_RunningSpd_HM[1] < Vel_RunningSpd_HM_danger[1]:
|
|
|
+ RPM2_MOD = True
|
|
|
+
|
|
|
+# 2x RPM, Severe, CF=8, Severity = 10
|
|
|
+# AND
|
|
|
+# Vel_RS_2 = Danger
|
|
|
+
|
|
|
+ if Vel_RunningSpd_HM[1] >= Vel_RunningSpd_HM_danger[1]:
|
|
|
+ RPM2_SEV = True
|
|
|
+
|
|
|
+# 3x, 4x, 5x RPM, moderate, CF=8, Severity = 5
|
|
|
+# AND
|
|
|
+# OR
|
|
|
+# Vel_RS_3 = Alert
|
|
|
+# Vel_RS_4 = Alert
|
|
|
+# Vel_RS_5 = Alert
|
|
|
+# NOR
|
|
|
+# Vel_RS_3 = Danger
|
|
|
+# Vel_RS_4 = Danger
|
|
|
+# Vel_RS_5 = Danger
|
|
|
+
|
|
|
+ if (Vel_RunningSpd_HM[2] >= Vel_RunningSpd_HM_alert[2] and Vel_RunningSpd_HM[2] < Vel_RunningSpd_HM_danger[2] or \
|
|
|
+ Vel_RunningSpd_HM[3] >= Vel_RunningSpd_HM_alert[3] and Vel_RunningSpd_HM[3] < Vel_RunningSpd_HM_danger[3] or \
|
|
|
+ Vel_RunningSpd_HM[4] >= Vel_RunningSpd_HM_alert[4] and Vel_RunningSpd_HM[4] < Vel_RunningSpd_HM_danger[4]) and \
|
|
|
+ (not(Vel_RunningSpd_HM[2] >= Vel_RunningSpd_HM_danger[2] or Vel_RunningSpd_HM[3] >= Vel_RunningSpd_HM_danger[3] or \
|
|
|
+ Vel_RunningSpd_HM[4] >= Vel_RunningSpd_HM_danger[4])):
|
|
|
+ RPM345_MOD = True
|
|
|
+
|
|
|
+# 3x, 4x, 5x RPM, Sever, CF=8, Severity = 10
|
|
|
+# OR
|
|
|
+# Vel_RS_3 = Danger
|
|
|
+# Vel_RS_4 = Danger
|
|
|
+# Vel_RS_5 = Danger
|
|
|
+
|
|
|
+ if Vel_RunningSpd_HM[2] >= Vel_RunningSpd_HM_danger[2] or Vel_RunningSpd_HM[3] >= Vel_RunningSpd_HM_danger[3] or \
|
|
|
+ Vel_RunningSpd_HM[4] >= Vel_RunningSpd_HM_danger[4]:
|
|
|
+ RPM345_SEV = True
|
|
|
+
|
|
|
+ return RPM1_MOD, RPM1_SEV, RPM2_MOD, RPM2_SEV, RPM345_MOD, RPM345_SEV
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+# Note: The alert and danger threshold values (in mm/s RMS) are set according to ISO vibration standard for flexible mounting in group 3
|
|
|
+
|
|
|
+ def RunningSpd_Fault_Diag(self,Vel_RunningSpd_HM, Vel_alert , Vel_danger, defectType ):
|
|
|
+ RPM1_MOD = False
|
|
|
+ RPM1_SEV = False
|
|
|
+ RPM2_MOD = False
|
|
|
+ RPM2_SEV = False
|
|
|
+ RPM345_MOD = False
|
|
|
+ RPM345_SEV = False
|
|
|
+
|
|
|
+ UnbalanceDetection = False
|
|
|
+ UnbalanceSev = 0
|
|
|
+ MisalignmentDetction = False
|
|
|
+ MisalignmentSev = 0
|
|
|
+ LoosenessDetection = False
|
|
|
+ LoosenessSev = 0
|
|
|
+
|
|
|
+ Vel_Unbalance_HM_alert = np.zeros(5)
|
|
|
+ Vel_Unbalance_HM_danger = np.zeros(5)
|
|
|
+ Vel_Misalignment_HM_alert = np.zeros(5)
|
|
|
+ Vel_Misalignment_HM_danger = np.zeros(5)
|
|
|
+ Vel_Looseness_HM_alert = np.zeros(5)
|
|
|
+ Vel_Looseness_HM_danger = np.zeros(5)
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+# Check Unbalance
|
|
|
+ if defectType == 'Unbalance':
|
|
|
+ [Vel_Unbalance_HM_alert, Vel_Unbalance_HM_danger] = self.Vel_Unbalance_HM_Threshold(Vel_alert, Vel_danger)
|
|
|
+ [RPM1_MOD, RPM1_SEV, RPM2_MOD, RPM2_SEV, RPM345_MOD, RPM345_SEV] = self.RunningSpd_Symptom_Rule(Vel_RunningSpd_HM, Vel_Unbalance_HM_alert, Vel_Unbalance_HM_danger)
|
|
|
+ # print('RPM1_MOD,RPM1_SEV, RPM2_MOD, RPM2_SEV, RPM345_MOD, RPM345_SEV',' ',RPM1_MOD,' ', RPM1_SEV,' ', RPM2_MOD, ' ',RPM2_SEV, ' ',RPM345_MOD, ' ',RPM345_SEV)
|
|
|
+
|
|
|
+# Unbalance, severe, rather confident, 1x RPM peak dominates, CF=8, Severity = 10
|
|
|
+# AND
|
|
|
+# RPM1_SEV == True
|
|
|
+# NOR
|
|
|
+# RPM2_MOD == True
|
|
|
+# RPM2_SEV == True
|
|
|
+# RPM345_MOD == True
|
|
|
+# RPM345_SEV == True
|
|
|
+
|
|
|
+ if RPM1_SEV == True and (not (RPM2_MOD == True or RPM2_SEV == True or RPM345_MOD == True or RPM345_SEV == True )):
|
|
|
+ UnbalanceDetection = True
|
|
|
+ UnbalanceSev = 8
|
|
|
+
|
|
|
+ else:
|
|
|
+
|
|
|
+# Unbalance, severe, somewhat confident 1x RPM peak dominates but low level of 2xRPM is possible, CF=6, Severity = 10
|
|
|
+# AND
|
|
|
+# RPM1_SEV == True
|
|
|
+# NOR
|
|
|
+# RPM2_SEV == True
|
|
|
+# RPM345_MOD == True
|
|
|
+# RPM345_SEV == True
|
|
|
+
|
|
|
+ if RPM1_SEV == True and (not(RPM2_SEV == True or RPM345_MOD == True or RPM345_SEV == True )):
|
|
|
+ UnbalanceDetection = True
|
|
|
+ UnbalanceSev = 6
|
|
|
+
|
|
|
+
|
|
|
+ else:
|
|
|
+# Unbalance, moderate, rather confident since 1x RPM peak dominates, CF=8, Severity = 5
|
|
|
+# AND
|
|
|
+# RPM1_MOD == True
|
|
|
+# NOR
|
|
|
+# RPM2_MOD == True
|
|
|
+# RPM2_SEV == True
|
|
|
+# RPM345_MOD == True
|
|
|
+# RPM345_SEV == True
|
|
|
+
|
|
|
+ if RPM1_MOD == True and (not(RPM2_MOD == True or RPM2_SEV == True or RPM345_MOD == True or RPM345_SEV == True )):
|
|
|
+ UnbalanceDetection = True
|
|
|
+ UnbalanceSev = 5
|
|
|
+
|
|
|
+ return UnbalanceDetection, UnbalanceSev
|
|
|
+###############################################################################
|
|
|
+# Check Misalignment
|
|
|
+
|
|
|
+ if defectType == 'Misalignment':
|
|
|
+ [Vel_Misalignment_HM_alert, Vel_Misalignment_HM_danger] = self.Vel_Misalignment_HM_Threshold(Vel_alert, Vel_danger)
|
|
|
+ [RPM1_MOD, RPM1_SEV, RPM2_MOD, RPM2_SEV, RPM345_MOD, RPM345_SEV] = self.RunningSpd_Symptom_Rule(Vel_RunningSpd_HM, Vel_Misalignment_HM_alert, Vel_Misalignment_HM_danger)
|
|
|
+
|
|
|
+# Misalignment, moderate CF = 8, Severity = 10
|
|
|
+# AND
|
|
|
+# RPM2_SEV == True
|
|
|
+# OR
|
|
|
+# RPM1_MOD == True
|
|
|
+# RPM1_SEV == True
|
|
|
+# RPM345_MOD == True
|
|
|
+# NOR
|
|
|
+# RPM345_SEV == True
|
|
|
+
|
|
|
+ if RPM2_SEV == True and (RPM1_MOD == True or RPM1_SEV == True or RPM345_MOD == True) and (not(RPM1_SEV == True)):
|
|
|
+ MisalignmentDetction = True
|
|
|
+ MisalignmentSev = 8
|
|
|
+
|
|
|
+# Misalignment, moderate CF = 6, Severity 10
|
|
|
+# AND
|
|
|
+# RPM2_SEV == True
|
|
|
+# NOR
|
|
|
+# RPM1_MOD == True
|
|
|
+# RPM1_SEV == True
|
|
|
+# RPM345_MOD == True
|
|
|
+# RPM345_SEV == True
|
|
|
+
|
|
|
+ else:
|
|
|
+ if RPM2_SEV == True and (not(RPM1_MOD == True or RPM1_SEV == True or RPM345_MOD == True or RPM345_SEV == True)):
|
|
|
+ MisalignmentDetction = True
|
|
|
+ MisalignmentSev = 6
|
|
|
+
|
|
|
+# Misalignment, moderate CF = 8, Severity = 5
|
|
|
+# AND
|
|
|
+# RPM2_MOD == True
|
|
|
+# OR
|
|
|
+# RPM1_MOD == True
|
|
|
+# RPM345_MOD == True
|
|
|
+# NOR
|
|
|
+# RPM1_SEV == True
|
|
|
+# RPM345_SEV == True
|
|
|
+ else:
|
|
|
+ if RPM2_MOD == True and (RPM1_MOD == True or RPM345_MOD == True) and (not(RPM1_SEV == True or RPM345_SEV == True)):
|
|
|
+ MisalignmentDetction = True
|
|
|
+ MisalignmentSev = 5
|
|
|
+
|
|
|
+# Misalignment, moderate CF = 6, Severity = 5
|
|
|
+# AND
|
|
|
+# RPM2_MOD == True
|
|
|
+# NOR
|
|
|
+# RPM1_MOD == True
|
|
|
+# RPM1_SEV == True
|
|
|
+# RPM345_MOD == True
|
|
|
+# RPM345_SEV == True
|
|
|
+
|
|
|
+ else:
|
|
|
+ if RPM2_MOD == True and (not (RPM1_MOD == True or RPM1_SEV == True or RPM345_MOD == True or RPM345_SEV == True)):
|
|
|
+ MisalignmentDetction = True
|
|
|
+ MisalignmentSev = 4
|
|
|
+
|
|
|
+ return MisalignmentDetction, MisalignmentSev
|
|
|
+###############################################################################
|
|
|
+# Check Looseness
|
|
|
+ if defectType == 'Looseness':
|
|
|
+ [Vel_Looseness_HM_alert, Vel_Looseness_HM_danger] = self.Vel_Looseness_HM_Threshold(Vel_alert, Vel_danger)
|
|
|
+ [RPM1_MOD, RPM1_SEV, RPM2_MOD, RPM2_SEV, RPM345_MOD, RPM345_SEV] = self.RunningSpd_Symptom_Rule(Vel_RunningSpd_HM, Vel_Looseness_HM_alert, Vel_Looseness_HM_danger)
|
|
|
+
|
|
|
+# Mechanical looseness, sever CF = 8, Severity = 10
|
|
|
+# OR
|
|
|
+# AND
|
|
|
+# RPM1_SEV == True
|
|
|
+# OR
|
|
|
+# RPM345_MOD == True
|
|
|
+# RPM345_SEV == True
|
|
|
+# AND
|
|
|
+# RPM2_SEV == True
|
|
|
+# OR
|
|
|
+# RPM345_MOD == True
|
|
|
+# RPM345_SEV == True
|
|
|
+# AND
|
|
|
+# RPM345_SEV == True
|
|
|
+# OR
|
|
|
+# RPM1_MOD == True
|
|
|
+# RPM1_SEV == True
|
|
|
+# AND
|
|
|
+# RPM345_SEV == True
|
|
|
+# OR
|
|
|
+# RPM2_MOD == True
|
|
|
+# RPM2_SEV == True
|
|
|
+
|
|
|
+ if (RPM1_SEV == True and (RPM345_MOD == True or RPM345_SEV == True )) or (RPM2_SEV == True and (RPM345_MOD == True or RPM345_SEV == True )) or \
|
|
|
+ (RPM345_SEV == True and (RPM1_MOD == True or RPM1_SEV == True )) or (RPM345_SEV == True and (RPM2_MOD == True or RPM2_SEV == True )):
|
|
|
+ LoosenessDetection = True
|
|
|
+ LoosenessSev = 8
|
|
|
+
|
|
|
+# Mechanical looseness, sever CF = 6, Severity = 10
|
|
|
+# AND
|
|
|
+# RPM345_SEV == True
|
|
|
+# NOR
|
|
|
+# RPM1_MOD == True
|
|
|
+# RPM1_SEV == True
|
|
|
+# RPM2_MOD == True
|
|
|
+# RPM2_SEV == True
|
|
|
+
|
|
|
+ else:
|
|
|
+ if RPM345_SEV == True and (not( RPM1_MOD == True or RPM1_SEV == True or RPM2_MOD == True or RPM2_SEV == True )):
|
|
|
+ LoosenessDetection = True
|
|
|
+ LoosenessSev = 6
|
|
|
+
|
|
|
+# Mechanical looseness, moderate CF = 8, Severity = 5
|
|
|
+# AND
|
|
|
+# OR
|
|
|
+# AND
|
|
|
+# RPM1_MOD == True
|
|
|
+# RPM345_MOD == True
|
|
|
+# AND
|
|
|
+# RPM2_MOD == True
|
|
|
+# RPM345_MOD == True
|
|
|
+# NOR
|
|
|
+# RPM1_SEV == True
|
|
|
+# RPM2_SEV == True
|
|
|
+# RPM345_SEV == True
|
|
|
+
|
|
|
+ else:
|
|
|
+ if ((RPM1_MOD == True and RPM345_MOD == True )or(RPM2_MOD == True and RPM345_MOD == True))and\
|
|
|
+ (not(RPM1_SEV == True or RPM2_SEV == True or RPM345_SEV == True)):
|
|
|
+ LoosenessDetection = True
|
|
|
+ LoosenessSev = 5
|
|
|
+
|
|
|
+# Mechanical looseness, moderate CF = 6, Severity = 5
|
|
|
+# AND
|
|
|
+# RPM345_MOD == True
|
|
|
+# NOR
|
|
|
+# RPM1_MOD == True
|
|
|
+# RPM1_SEV == True
|
|
|
+# RPM2_MOD == True
|
|
|
+# RPM2_SEV == True
|
|
|
+
|
|
|
+ else:
|
|
|
+ if RPM345_MOD == True and (not( RPM1_MOD == True or RPM1_SEV == True or RPM2_MOD == True or \
|
|
|
+ RPM2_SEV == True )):
|
|
|
+ LoosenessDetection = True
|
|
|
+ LoosenessSev = 4
|
|
|
+
|
|
|
+
|
|
|
+ return LoosenessDetection, LoosenessSev
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def GMF_GTIF_Symptom_Rule(self,Vel_GMF_HM, Acc_GMF_HM, gE_GMF_HM, gE_GTIF_HM, Vel_GMF_HM_alert, Vel_GMF_HM_danger, \
|
|
|
+ Acc_GMF_HM_alert, Acc_GMF_HM_danger, gE_GMF_HM_alert, gE_GMF_HM_danger, gE_GTIF_HM_alert, \
|
|
|
+ gE_GTIF_HM_danger):
|
|
|
+ GMF_MOD = False
|
|
|
+ GMF_SEV = False
|
|
|
+ GTIF = False
|
|
|
+
|
|
|
+
|
|
|
+# Gear mesh frequency and harmonics, moderate, CF=8, Severity = 5
|
|
|
+# AND
|
|
|
+# OR
|
|
|
+# Vel_GMF_1 = Alert
|
|
|
+# Vel_GMF_2 = Alert
|
|
|
+# Vel_GMF_3 = Alert
|
|
|
+# Acc_GMF_1 = Alert
|
|
|
+# Acc_GMF_2 = Alert
|
|
|
+# Acc_GMF_3 = Alert
|
|
|
+# gE_GMF_1 = Alert
|
|
|
+# gE_GMF_2 = Alert
|
|
|
+# gE_GMF_3 = Alert
|
|
|
+# NOR
|
|
|
+# Vel_GMF_1 = Danger
|
|
|
+# Vel_GMF_2 = Danger
|
|
|
+# Vel_GMF_3 = Danger
|
|
|
+# Acc_GMF_1 = Danger
|
|
|
+# Acc_GMF_2 = Danger
|
|
|
+# Acc_GMF_3 = Danger
|
|
|
+# gE_GMF_1 = Danger
|
|
|
+# gE_GMF_2 = Danger
|
|
|
+# gE_GMF_3 = Danger
|
|
|
+
|
|
|
+ if (Vel_GMF_HM[0] >= Vel_GMF_HM_alert[0] and Vel_GMF_HM[0] < Vel_GMF_HM_danger[0] or \
|
|
|
+ Vel_GMF_HM[1] >= Vel_GMF_HM_alert[1] and Vel_GMF_HM[1] < Vel_GMF_HM_danger[1] or \
|
|
|
+ Vel_GMF_HM[2] >= Vel_GMF_HM_alert[2] and Vel_GMF_HM[2] < Vel_GMF_HM_danger[2] or \
|
|
|
+ Acc_GMF_HM[0] >= Acc_GMF_HM_alert[0] and Acc_GMF_HM[0] < Acc_GMF_HM_danger[0] or \
|
|
|
+ Acc_GMF_HM[1] >= Acc_GMF_HM_alert[1] and Acc_GMF_HM[1] < Acc_GMF_HM_danger[1] or \
|
|
|
+ Acc_GMF_HM[2] >= Acc_GMF_HM_alert[2] and Acc_GMF_HM[2] < Acc_GMF_HM_danger[2] or \
|
|
|
+ gE_GMF_HM[0] >= gE_GMF_HM_alert[0] and gE_GMF_HM[0] < gE_GMF_HM_danger[0] or \
|
|
|
+ gE_GMF_HM[1] >= gE_GMF_HM_alert[1] and gE_GMF_HM[1] < gE_GMF_HM_danger[1] or \
|
|
|
+ gE_GMF_HM[2] >= gE_GMF_HM_alert[2] and gE_GMF_HM[2] < gE_GMF_HM_danger[2]) \
|
|
|
+ and \
|
|
|
+ (not(Vel_GMF_HM[0] >= Vel_GMF_HM_danger[0] or \
|
|
|
+ Vel_GMF_HM[1] >= Vel_GMF_HM_danger[1] or \
|
|
|
+ Vel_GMF_HM[2] >= Vel_GMF_HM_danger[2] or \
|
|
|
+ Acc_GMF_HM[0] >= Acc_GMF_HM_danger[0] or \
|
|
|
+ Acc_GMF_HM[1] >= Acc_GMF_HM_danger[1] or \
|
|
|
+ Acc_GMF_HM[2] >= Acc_GMF_HM_danger[2] or \
|
|
|
+ gE_GMF_HM[0] >= gE_GMF_HM_danger[0] or \
|
|
|
+ gE_GMF_HM[1] >= gE_GMF_HM_danger[1] or \
|
|
|
+ gE_GMF_HM[2] >= gE_GMF_HM_danger[2])):
|
|
|
+
|
|
|
+ GMF_MOD = True
|
|
|
+
|
|
|
+# Gear mesh frequency and harmonics, sever, CF=8, Severity = 10
|
|
|
+# OR
|
|
|
+# Vel_GMF_1 = Danger
|
|
|
+# Vel_GMF_2 = Danger
|
|
|
+# Vel_GMF_3 = Danger
|
|
|
+# Acc_GMF_1 = Danger
|
|
|
+# Acc_GMF_2 = Danger
|
|
|
+# Acc_GMF_3 = Danger
|
|
|
+# gE_GMF_1 = Danger
|
|
|
+# gE_GMF_2 = Danger
|
|
|
+# gE_GMF_3 = Danger
|
|
|
+
|
|
|
+
|
|
|
+ if (Vel_GMF_HM[0] >= Vel_GMF_HM_danger[0] or \
|
|
|
+ Vel_GMF_HM[1] >= Vel_GMF_HM_danger[1] or \
|
|
|
+ Vel_GMF_HM[2] >= Vel_GMF_HM_danger[2] or \
|
|
|
+ Acc_GMF_HM[0] >= Acc_GMF_HM_danger[0] or \
|
|
|
+ Acc_GMF_HM[1] >= Acc_GMF_HM_danger[1] or \
|
|
|
+ Acc_GMF_HM[2] >= Acc_GMF_HM_danger[2] or \
|
|
|
+ gE_GMF_HM[0] >= gE_GMF_HM_danger[0] or \
|
|
|
+ gE_GMF_HM[1] >= gE_GMF_HM_danger[1] or \
|
|
|
+ gE_GMF_HM[2] >= gE_GMF_HM_danger[2]):
|
|
|
+
|
|
|
+ GMF_SEV = True
|
|
|
+
|
|
|
+# Gear tooth impact frequency and harmonics, CF=8, Severity = 10
|
|
|
+# OR
|
|
|
+# gE_GTIF_1 >= Alert
|
|
|
+# gE_GTIF_2 >= Alert
|
|
|
+# gE_GTIF_3 >= Alert
|
|
|
+# gE_GTIF_4 >= Alert
|
|
|
+# gE_GTIF_5 >= Alert
|
|
|
+
|
|
|
+ if (gE_GTIF_HM[0] >= gE_GTIF_HM_alert[0] or \
|
|
|
+ gE_GTIF_HM[1] >= gE_GTIF_HM_alert[1] or \
|
|
|
+ gE_GTIF_HM[2] >= gE_GTIF_HM_alert[2] or \
|
|
|
+ gE_GTIF_HM[3] >= gE_GTIF_HM_alert[3] or \
|
|
|
+ gE_GTIF_HM[4] >= gE_GTIF_HM_alert[4]):
|
|
|
+
|
|
|
+ GTIF = True
|
|
|
+
|
|
|
+
|
|
|
+ return GMF_MOD, GMF_SEV, GTIF
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Gear_Fault_Diag(self,Acc_GMF_HM, Vel_GMF_HM, gE_GMF_HM, gE_GTIF_HM, Acc_GMF_alert_gPk = 0.299, Acc_GMF_danger_gPk = 0.344, \
|
|
|
+ Vel_GMF_alert_mmsRMS = 4.0, Vel_GMF_danger_mmsRMS = 8.0, gE_GMF_alert_gE = 3.0, \
|
|
|
+ gE_GMF_danger_gE = 6.0, gE_GTIF_alert_gE = 3.0, gE_GTIF_danger_gE = 6.0):
|
|
|
+
|
|
|
+ GMF_MOD = False
|
|
|
+ GMF_SEV = False
|
|
|
+ GTIF = False
|
|
|
+
|
|
|
+
|
|
|
+ Acc_GMF_HM_alert =[]
|
|
|
+ Acc_GMF_HM_danger = []
|
|
|
+ Vel_GMF_HM_alert =[]
|
|
|
+ Vel_GMF_HM_danger = []
|
|
|
+ gE_GMF_HM_alert = []
|
|
|
+ gE_GMF_HM_danger = []
|
|
|
+ gE_GTIF_HM_alert = []
|
|
|
+ gE_GTIF_HM_danger = []
|
|
|
+
|
|
|
+ GearToothWearDetection = False
|
|
|
+ GearToothWearSev = 0
|
|
|
+
|
|
|
+ GearToothCrackBrokenDetection = False
|
|
|
+ GearToothCrackBrokenSev = 0
|
|
|
+
|
|
|
+ [Acc_GMF_HM_alert, Acc_GMF_HM_danger] = self.Acc_GMF_HM_Threshhold(Acc_GMF_alert_gPk, Acc_GMF_danger_gPk)
|
|
|
+ [Vel_GMF_HM_alert, Vel_GMF_HM_danger] = self.Vel_GMF_HM_Threshhold(Vel_GMF_alert_mmsRMS, Vel_GMF_danger_mmsRMS)
|
|
|
+ [gE_GMF_HM_alert, gE_GMF_HM_danger] = self.gE_GMF_HM_Threshhold(gE_GMF_alert_gE, gE_GMF_danger_gE)
|
|
|
+ [gE_GTIF_HM_alert, gE_GTIF_HM_danger] = self.gE_GTIF_HM_Threshhold(gE_GTIF_alert_gE, gE_GTIF_danger_gE)
|
|
|
+
|
|
|
+ [GMF_MOD, GMF_SEV, GTIF] = self.GMF_GTIF_Symptom_Rule(Vel_GMF_HM, Acc_GMF_HM, gE_GMF_HM, gE_GTIF_HM, Vel_GMF_HM_alert, \
|
|
|
+ Vel_GMF_HM_danger, Acc_GMF_HM_alert, Acc_GMF_HM_danger, \
|
|
|
+ gE_GMF_HM_alert, gE_GMF_HM_danger, gE_GTIF_HM_alert, gE_GTIF_HM_danger)
|
|
|
+
|
|
|
+# Gear wear, misalignment, or eccentricity, sever, CF = 8, severity = 10
|
|
|
+# AND
|
|
|
+# GMF_SEV = True
|
|
|
+
|
|
|
+ if GMF_SEV == True:
|
|
|
+ GearToothWearDetection = True
|
|
|
+ GearToothWearSev = 10
|
|
|
+
|
|
|
+# Gear wear, misalignment, or eccentricity, moderate, CF = 8, severity = 5
|
|
|
+# AND
|
|
|
+# GMF_MOD = True
|
|
|
+
|
|
|
+ else:
|
|
|
+ if GMF_MOD == True:
|
|
|
+ GearToothWearDetection = True
|
|
|
+ GearToothWearSev = 5
|
|
|
+
|
|
|
+# Gear tooth broken or cracked, CF = 8, severity = 5
|
|
|
+# AND
|
|
|
+# GTIF = True
|
|
|
+# NOR
|
|
|
+# GMF_MOD = True
|
|
|
+# GMF_SEV = True
|
|
|
+
|
|
|
+ if GTIF == True and (not(GMF_MOD == True or GMF_SEV == True)):
|
|
|
+ GearToothCrackBrokenDetection = True
|
|
|
+ GearToothCrackBrokenSev = 5
|
|
|
+
|
|
|
+ return GearToothWearDetection, GearToothWearSev, GearToothCrackBrokenDetection, GearToothCrackBrokenSev
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+# Note: the default alert and danger threshold values (in mm/s RMS for velocity and g peak for acceleration) are set according a DSS AC motor model, it can be adjusted if necessary
|
|
|
+ def RBPF_Symptom_Rule(self,Vel_RBPF_HM, Acc_RBPF_HM, Vel_RBPF_HM_alert, Vel_RBPF_HM_danger, Acc_RBPF_HM_alert, \
|
|
|
+ Acc_RBPF_HM_danger):
|
|
|
+ RBPF_MOD = False
|
|
|
+ RBPF_SEV = False
|
|
|
+
|
|
|
+# Rotorbar pass frequency, sever, CF=8, severity = 10
|
|
|
+# OR
|
|
|
+# Vel_RBPF_1 == Danger
|
|
|
+# Acc_RBPF_1 == Danger
|
|
|
+
|
|
|
+ if (Vel_RBPF_HM[0] >= Vel_RBPF_HM_danger[0] or Acc_RBPF_HM[0] >= Acc_RBPF_HM_danger[0]):
|
|
|
+ RBPF_SEV = True
|
|
|
+
|
|
|
+# Rotorbar pass frequency, moderate, CF=8, severity = 5
|
|
|
+# OR
|
|
|
+# Vel_RBPF_1 == Alert
|
|
|
+# Acc_RBPF_1 == Alert
|
|
|
+
|
|
|
+ else:
|
|
|
+ if (Vel_RBPF_HM[0] >= Vel_RBPF_HM_alert[0] or Acc_RBPF_HM[0] >= Acc_RBPF_HM_alert[0]) and Vel_RBPF_HM[0] < Vel_RBPF_HM_danger[0] and Acc_RBPF_HM[0] < Acc_RBPF_HM_danger[0]:
|
|
|
+ RBPF_MOD = True
|
|
|
+
|
|
|
+ return RBPF_MOD, RBPF_SEV
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+# Note: the default alert and danger threshold values (in mm/s RMS for velocity and g peak for acceleration) are set according a DSS AC motor model, it can be adjusted if necessary
|
|
|
+ def Cracked_Rotorbar_Diag(self,Vel_RBPF_HM, Acc_RBPF_HM, Vel_RBPF_alert_mmsRMS = 0.064*25.4, \
|
|
|
+ Vel_RBPF_danger_mmsRMS = 0.127*25.4, Acc_RBPF_alert_gPk = 2.5, Acc_RBPF_danger_gPk = 3.75):
|
|
|
+ RBPF_MOD = False
|
|
|
+ RBPF_SEV = False
|
|
|
+
|
|
|
+ Vel_RBPF_HM_alert = []
|
|
|
+ Vel_RBPF_HM_danger = []
|
|
|
+ Acc_RBPF_HM_alert = []
|
|
|
+ Acc_RBPF_HM_danger = []
|
|
|
+
|
|
|
+ CrackedRotorbarDetection = False
|
|
|
+ CrackedRotorbarSev = 0
|
|
|
+
|
|
|
+ [Acc_RBPF_HM_alert, Acc_RBPF_HM_danger] = self.Acc_RBPF_HM_Threshhold(Acc_RBPF_alert_gPk, Acc_RBPF_danger_gPk)
|
|
|
+ [Vel_RBPF_HM_alert,Vel_RBPF_HM_danger] = self.Vel_RBPF_HM_Threshhold(Vel_RBPF_alert_mmsRMS, Vel_RBPF_danger_mmsRMS)
|
|
|
+
|
|
|
+
|
|
|
+ [RBPF_MOD, RBPF_SEV] = self.RBPF_Symptom_Rule(Vel_RBPF_HM, Acc_RBPF_HM, Vel_RBPF_HM_alert, Vel_RBPF_HM_danger, Acc_RBPF_HM_alert, Acc_RBPF_HM_danger)
|
|
|
+
|
|
|
+# Cracked rotorbar, sever CF = 8, severity = 10
|
|
|
+# AND
|
|
|
+# RBPF_SEV = True
|
|
|
+ if RBPF_SEV == True:
|
|
|
+ CrackedRotorbarDetection = True
|
|
|
+ CrackedRotorbarSev = 8
|
|
|
+
|
|
|
+# Cracked rotorbar, moderate CF = 8, severity = 5
|
|
|
+# AND
|
|
|
+# RBPF_MOD = True
|
|
|
+# NOR
|
|
|
+# RBPF_SEV = True
|
|
|
+
|
|
|
+ if RBPF_MOD == True and (not(RBPF_SEV == True)):
|
|
|
+ CrackedRotorbarDetection = True
|
|
|
+ CrackedRotorbarSev = 5
|
|
|
+
|
|
|
+ return CrackedRotorbarDetection, CrackedRotorbarSev
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+# Note: the default velocity alert and danger threshold (in mm/s RMS for velocity) is set according a DSS AC motor model, it can be adjusted if necessary
|
|
|
+ def LF2X_Symptom_Rule(self,Vel_2XLF_HM, gE_2XLF_HM, Vel_2XLF_HM_alert, Vel_2XLF_HM_danger, gE_2XLF_HM_alert, gE_2XLF_HM_danger):
|
|
|
+ LF2X_MOD = False
|
|
|
+ LF2X_SEV = False
|
|
|
+
|
|
|
+# 2X line frequency, moderate, CF=8, severity = 5
|
|
|
+# AND
|
|
|
+# Vel_2XLF_1 = alert
|
|
|
+
|
|
|
+ if Vel_2XLF_HM[0] >= Vel_2XLF_HM_alert[0] and Vel_2XLF_HM[0] < Vel_2XLF_HM_danger[0]:
|
|
|
+ LF2X_MOD = True
|
|
|
+
|
|
|
+# 2X line frequency, moderate, several defect peaks, no confirming velocity, CF=8, severity = 5
|
|
|
+# AND
|
|
|
+# OR
|
|
|
+# AND
|
|
|
+# gE_2XLF_1 = alert
|
|
|
+# gE_2XLF_2 = alert
|
|
|
+# AND
|
|
|
+# gE_2XLF_1 = alert
|
|
|
+# gE_2XLF_3 = alert
|
|
|
+# AND
|
|
|
+# gE_2XLF_1 = alert
|
|
|
+# gE_2XLF_4 = alert
|
|
|
+# AND
|
|
|
+# gE_2XLF_1 = alert
|
|
|
+# gE_2XLF_5 = alert
|
|
|
+# NOR
|
|
|
+# Vel_2XLF_1 >= alert
|
|
|
+
|
|
|
+ else:
|
|
|
+ if (((gE_2XLF_HM[0] >= gE_2XLF_HM_alert[0] and gE_2XLF_HM[0] < gE_2XLF_HM_danger[0]) and (gE_2XLF_HM[1] >= gE_2XLF_HM_alert[1] and gE_2XLF_HM[1] < gE_2XLF_HM_danger[1])) or \
|
|
|
+ ((gE_2XLF_HM[0] >= gE_2XLF_HM_alert[0] and gE_2XLF_HM[0] < gE_2XLF_HM_danger[0]) and (gE_2XLF_HM[2] >= gE_2XLF_HM_alert[2] and gE_2XLF_HM[2] < gE_2XLF_HM_danger[2])) or \
|
|
|
+ ((gE_2XLF_HM[0] >= gE_2XLF_HM_alert[0] and gE_2XLF_HM[0] < gE_2XLF_HM_danger[0]) and (gE_2XLF_HM[3] >= gE_2XLF_HM_alert[3] and gE_2XLF_HM[3] < gE_2XLF_HM_danger[3])) or \
|
|
|
+ ((gE_2XLF_HM[0] >= gE_2XLF_HM_alert[0] and gE_2XLF_HM[0] < gE_2XLF_HM_danger[0]) and (gE_2XLF_HM[4] >= gE_2XLF_HM_alert[4] and gE_2XLF_HM[4] < gE_2XLF_HM_danger[4]))) and \
|
|
|
+ (not(Vel_2XLF_HM[0] >= Vel_2XLF_HM_alert[0])):
|
|
|
+ LF2X_MOD = True
|
|
|
+
|
|
|
+# 2X line frequency, severe, CF=8, severity = 10
|
|
|
+# AND
|
|
|
+# Vel_2XLF_1 = Danger
|
|
|
+
|
|
|
+ if Vel_2XLF_HM[0] >= Vel_2XLF_HM_danger[0]:
|
|
|
+ LF2X_SEV = True
|
|
|
+
|
|
|
+# 2X line frequency, severe, several defect peaks, no confirming velocity, CF=8, severity = 10
|
|
|
+# AND
|
|
|
+# OR
|
|
|
+# AND
|
|
|
+# gE_2XLF_1 >= danger
|
|
|
+# gE_2XLF_2 >= alert
|
|
|
+# AND
|
|
|
+# gE_2XLF_1 >= danger
|
|
|
+# gE_2XLF_3 >= alert
|
|
|
+# AND
|
|
|
+# gE_2XLF_1 >= danger
|
|
|
+# gE_2XLF_4 >= alert
|
|
|
+# AND
|
|
|
+# gE_2XLF_1 >= danger
|
|
|
+# gE_2XLF_5 >= alert
|
|
|
+# NOR
|
|
|
+# Vel_2XLF_1 >= alert
|
|
|
+
|
|
|
+ else:
|
|
|
+ if (((gE_2XLF_HM[0] >= gE_2XLF_HM_danger[0]) and (gE_2XLF_HM[1] >= gE_2XLF_HM_alert[1])) or \
|
|
|
+ ((gE_2XLF_HM[0] >= gE_2XLF_HM_danger[0]) and (gE_2XLF_HM[2] >= gE_2XLF_HM_alert[2])) or \
|
|
|
+ ((gE_2XLF_HM[0] >= gE_2XLF_HM_danger[0]) and (gE_2XLF_HM[3] >= gE_2XLF_HM_alert[3])) or \
|
|
|
+ ((gE_2XLF_HM[0] >= gE_2XLF_HM_danger[0]) and (gE_2XLF_HM[4] >= gE_2XLF_HM_alert[4]))) and \
|
|
|
+ (not(Vel_2XLF_HM[0] < Vel_2XLF_HM_alert[0])):
|
|
|
+ LF2X_SEV = True
|
|
|
+
|
|
|
+# 2X line frequency, severe, confirmed by velocity spectrum, CF=8, severity = 10
|
|
|
+# AND
|
|
|
+# OR
|
|
|
+# gE_2XLF_1 >= Alert
|
|
|
+# gE_2XLF_2 >= Alert
|
|
|
+# OR
|
|
|
+# Vel_2XLF_1 >= Alert
|
|
|
+
|
|
|
+
|
|
|
+ else:
|
|
|
+ if (gE_2XLF_HM[0] >= gE_2XLF_HM_alert[0] or gE_2XLF_HM[1] >= gE_2XLF_HM_alert[1]) and \
|
|
|
+ Vel_2XLF_HM[0] >= Vel_2XLF_HM_alert[0]:
|
|
|
+ LF2X_SEV = True
|
|
|
+
|
|
|
+ return LF2X_MOD, LF2X_SEV
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Variable_AirGap_Diag(self,Vel_2XLF_HM, gE_2XLF_HM, Vel_2XLF_alert = 0.064*25.4, Vel_2XLF_danger = 0.127*25.4, gE_2XLF_alert = 3, gE_2XLF_danger = 10):
|
|
|
+ LF2X_MOD = False
|
|
|
+ LF2X_SEV = False
|
|
|
+
|
|
|
+ gE_2XLF_HM_alert = []
|
|
|
+ gE_2XLF_HM_danger = []
|
|
|
+ Vel_2XLF_HM_alert = []
|
|
|
+ Vel_2XLF_HM_danger = []
|
|
|
+
|
|
|
+ VariableAirgapDetection = False
|
|
|
+ VariableAirgapSev = 0
|
|
|
+
|
|
|
+ [gE_2XLF_HM_alert,gE_2XLF_HM_danger] = self.gE_2XLF_HM_Threshhold(gE_2XLF_alert, gE_2XLF_danger)
|
|
|
+ [Vel_2XLF_HM_alert,Vel_2XLF_HM_danger] = self.Vel_2XLF_HM_Threshhold(Vel_2XLF_alert, Vel_2XLF_danger)
|
|
|
+ [LF2X_MOD, LF2X_SEV] = self.LF2X_Symptom_Rule(Vel_2XLF_HM, gE_2XLF_HM, Vel_2XLF_HM_alert, Vel_2XLF_HM_danger,gE_2XLF_HM_alert, gE_2XLF_HM_danger)
|
|
|
+
|
|
|
+# Variable air gap, sever CF = 8, severity = 10
|
|
|
+# AND
|
|
|
+# LF2X_SEV = True
|
|
|
+ if LF2X_SEV == True:
|
|
|
+ VariableAirgapDetection = True
|
|
|
+ VariableAirgapSev = 8
|
|
|
+
|
|
|
+# Variable air gap, moderate CF = 8, severity = 5
|
|
|
+# AND
|
|
|
+# LF2X_MOD = True
|
|
|
+# NOR
|
|
|
+# LF2X_SEV = True
|
|
|
+ else:
|
|
|
+ if LF2X_MOD == True and LF2X_SEV == False:
|
|
|
+ VariableAirgapDetection = True
|
|
|
+ VariableAirgapSev = 5
|
|
|
+
|
|
|
+ return VariableAirgapDetection, VariableAirgapSev
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+
|
|
|
+ def VPF_Symptom_Rule(self,Vel_VPF_HM, Vel_VPF_HM_alert, Vel_VPF_HM_danger):
|
|
|
+ VAN_VPFH_MOD = False
|
|
|
+ VAN_VPFH_SEV = False
|
|
|
+
|
|
|
+# Vane pass frequency and harmonics (VPFH), sever, CF=8, Severity = 10
|
|
|
+# OR
|
|
|
+# Vel_VPF_1 = Danger
|
|
|
+# Vel_VPF_2 = Danger
|
|
|
+
|
|
|
+ if Vel_VPF_HM[0] >= Vel_VPF_HM_danger[0] or Vel_VPF_HM[1] >= Vel_VPF_HM_danger[1] :
|
|
|
+ VAN_VPFH_SEV = True
|
|
|
+
|
|
|
+
|
|
|
+# Vane pass frequency and harmonics (VPFH), moderate, CF=8, Severity = 5
|
|
|
+# AND
|
|
|
+# OR
|
|
|
+# Vel_VPF_1 = Alert
|
|
|
+# Vel_VPF_2 = Alert
|
|
|
+# NOR
|
|
|
+# Vel_VPF_1 = Danger
|
|
|
+# Vel_VPF_2 = Danger
|
|
|
+
|
|
|
+
|
|
|
+ if (Vel_VPF_HM[0] >= Vel_VPF_HM_alert[0] and Vel_VPF_HM[0] < Vel_VPF_HM_danger[0] or\
|
|
|
+ Vel_VPF_HM[1] >= Vel_VPF_HM_alert[1] and Vel_VPF_HM[1] < Vel_VPF_HM_danger[1]) and\
|
|
|
+ (not(Vel_VPF_HM[0] >= Vel_VPF_HM_danger[0] or Vel_VPF_HM[1] >= Vel_VPF_HM_danger[1])):
|
|
|
+ VAN_VPFH_MOD = True
|
|
|
+
|
|
|
+ return VAN_VPFH_MOD, VAN_VPFH_SEV
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # @staticmethod
|
|
|
+ def Vane_WearDamage_Diag(self,Vel_VPF_HM, Vel_VPF_alert_mmsRMS = 0.159*25.4, \
|
|
|
+ Vel_VPF_danger_mmsRMS = 0.318*25.4):
|
|
|
+ VAN_VPFH_MOD = False
|
|
|
+ VAN_VPFH_SEV = False
|
|
|
+
|
|
|
+ Vel_VPF_HM_alert = []
|
|
|
+ Vel_VPF_HM_danger = []
|
|
|
+
|
|
|
+ VaneWearDamageDetection = False
|
|
|
+ VaneWearDamageSev = 0
|
|
|
+
|
|
|
+ [Vel_VPF_HM_alert,Vel_VPF_HM_danger] = self.Vel_VPF_HM_Threshhold(Vel_VPF_alert_mmsRMS, Vel_VPF_danger_mmsRMS)
|
|
|
+ [VAN_VPFH_MOD, VAN_VPFH_SEV] = self.VPF_Symptom_Rule(Vel_VPF_HM, Vel_VPF_HM_alert, Vel_VPF_HM_danger)
|
|
|
+
|
|
|
+# Vane wear or damage, severe CF = 8, severity = 10
|
|
|
+# OR
|
|
|
+# VAN_VPFH_SEV= True
|
|
|
+
|
|
|
+ if VAN_VPFH_SEV == True:
|
|
|
+ VaneWearDamageDetection = True
|
|
|
+ VaneWearDamageSev = 10
|
|
|
+
|
|
|
+# Vane wear or damage, moderate CF = 6, severity = 5
|
|
|
+# OR
|
|
|
+# VAN_VPFH_MOD= True
|
|
|
+
|
|
|
+ else:
|
|
|
+ if VAN_VPFH_MOD == True:
|
|
|
+ VaneWearDamageDetection = True
|
|
|
+ VaneWearDamageSev = 5
|
|
|
+
|
|
|
+ return VaneWearDamageDetection, VaneWearDamageSev
|
|
|
+
|
|
|
+###############################################################################
|
|
|
+###############################################################################
|
|
|
+ # 巴特沃斯带通滤波
|
|
|
+ # xTimeWave是时域波形数组, fs是采样频率,单位为Hz
|
|
|
+ # lowcut 为低截止频率,单位为Hz
|
|
|
+ # highcut 为高截止频率,单位为Hz
|
|
|
+ # Order为滤波器阶数,通常为偶数,2,4,6,8一般不超过8
|
|
|
+ def BandPassButter(self,xTimeWave, lowcut, highcut, fs, order):
|
|
|
+ low = lowcut * 2 / fs
|
|
|
+ high = highcut * 2 / fs
|
|
|
+ sos = signal.butter(order, [low, high], 'bandpass', output='sos')
|
|
|
+ filtered = signal.sosfilt(sos, xTimeWave)
|
|
|
+ return filtered
|