import pandas as pd from service.common_connect import trans wind_farms = { "WOF35900004": "平陆风电场", "WOF35100072": "阳曲风电场", "WOF35100073": "古交风电场", "WOF35200074": "马家梁风电场", "WOF35400075": "太谷风电场", "WOF35900076": "坡底风电场", "WOF35300077": "西潘风电场", "WOF35900078": "芮城风电场", "WOF34900079": "右玉风光互补电站", "WOF35800080": "贺家沟", "WOF35800081": "石楼风电场", "WOF35800082": "盂县风光互补电站" } # types = ['minute', 'second', 'warn', 'fault'] types = ['warn', 'fault'] def check_exist_table(table_name): sql = f"select count(1) as count from information_schema.tables where table_name= '{table_name}'" print(sql) data = trans.execute(sql)[0]['count'] return int(data) > 0 file_dir = r'C:\Users\wzl\Desktop\中广核104测点\20250513\data' def get_data(table_name, name, type): col = 'begin_time' if type in ['minute', 'second']: col = 'time_stamp' sql = f"select * from {table_name} where {col} > '2025-05-10 00:00:00'" df = pd.read_sql_query(sql, con=trans.get_engine()) df.to_csv(f'{file_dir}\\{name}_{type}.csv', index=False, encoding='utf-8') for wind, name in wind_farms.items(): for now_type in types: table_name = f'{wind}_{now_type}' if check_exist_table(table_name): get_data(table_name, name, now_type)