123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- # -*- coding: utf-8 -*-
- """
- Spyder 编辑器
- 这是一个临时脚本文件。
- """
- import os
- import pandas as pd
- pd.set_option('chained_assignment', None)
- select_cols = ['遥测名称', '遥测别名', '风场', '组件', '风机号', '测点']
- origin_col_map = {
- 'wind_turbine_number': '风机编号', 'wind_turbine_name': '风机原始名称', 'time_stamp': '时间戳',
- 'active_power': '有功功率', 'rotor_speed': '风轮转速', 'generator_speed': '发电机转速', 'wind_velocity': '风速',
- 'pitch_angle_blade_1': '桨距角1', 'pitch_angle_blade_2': '桨距角2', 'pitch_angle_blade_3': '桨距角3',
- 'cabin_position': '机舱位置', 'true_wind_direction': '绝对风向', 'yaw_error1': '对风角度',
- 'set_value_of_active_power': '有功功率设定值', 'gearbox_oil_temperature': '齿轮箱油温',
- 'generatordrive_end_bearing_temperature': '发电机驱动端轴承温度',
- 'generatornon_drive_end_bearing_temperature': '发电机非驱动端轴承温度', 'cabin_temperature': '机舱内温度',
- 'twisted_cable_angle': '扭缆角度', 'front_back_vibration_of_the_cabin': '机舱前后振动',
- 'side_to_side_vibration_of_the_cabin': '机舱左右振动', 'actual_torque': '实际力矩', 'given_torque': '给定力矩',
- 'clockwise_yaw_count': '顺时针偏航次数', 'counterclockwise_yaw_count': '逆时针偏航次数', 'unusable': '不可利用',
- 'power_curve_available': '功率曲线可用', 'required_gearbox_speed': '齿轮箱转速',
- 'inverter_speed_master_control': '变频器转速(主控)', 'outside_cabin_temperature': '环境温度',
- 'main_bearing_temperature': '主轴承轴承温度',
- 'gearbox_high_speed_shaft_bearing_temperature': '齿轮箱高速轴轴承温度',
- 'gearboxmedium_speed_shaftbearing_temperature': '齿轮箱中速轴轴承温度',
- 'gearbox_low_speed_shaft_bearing_temperature': '齿轮箱低速轴轴承温度',
- 'generator_winding1_temperature': '发电机绕组1温度', 'generator_winding2_temperature': '发电机绕组2温度',
- 'generator_winding3_temperature': '发电机绕组3温度', 'wind_turbine_status': '风机状态1',
- 'wind_turbine_status2': '风机状态2', 'turbulence_intensity': '湍流强度'
- }
- def save_df(df, name):
- df.to_excel(r'C:\Users\wzl\Desktop\中广核104测点\total' + os.sep + str(name) + '.xlsx', columns=select_cols,
- index=False)
- def common_measurepoint(df, name):
- df['风场'] = df['遥测别名'].apply(lambda x: x.split('.')[0])
- df['组件'] = df['遥测别名'].apply(lambda x: x.split('.')[3])
- df['风机号'] = df['遥测别名'].apply(lambda x: x.split('.')[2])
- df['测点'] = df['遥测别名'].apply(lambda x: '.'.join(x.split('.')[4:]))
- save_df(df, name + '测点')
- return df
- if __name__ == '__main__':
- df = pd.read_csv(r"D:\data\tmp\12CZYC.csv", encoding='gbk')
- df = df[~ df['遥测别名'].str.contains('Farm')]
- df = df[~ df['遥测别名'].str.contains('Statistics')]
- # 添加右玉处理
- name = '右玉'
- youyu_df = common_measurepoint(df[df['遥测名称'].str.contains(name)], name)
- # 添加平陆处理
- name = '平陆'
- pinglu_df = common_measurepoint(df[df['遥测名称'].str.contains(name)], name)
- # 添加芮城处理
- name = '芮城'
- ruicheng_df = common_measurepoint(df[df['遥测名称'].str.contains(name)], name)
- # 添加盂县处理
- name = '盂县'
- yuxian_df = common_measurepoint(df[df['遥测名称'].str.contains(name)], name)
- # 添加古交处理
- name = '古交'
- gujiao_df = common_measurepoint(df[df['遥测名称'].str.contains(name)], name)
- # 添加石楼处理
- name = '石楼'
- shilou_df = common_measurepoint(df[df['遥测名称'].str.contains(name)], name)
- # 添加阳曲处理
- name = '阳曲'
- yangqu_df = common_measurepoint(df[df['遥测名称'].str.contains(name)], name)
- # 添加西潘处理
- name = '西潘'
- xipan_df = common_measurepoint(df[df['遥测名称'].str.contains(name)], name)
- # 添加马家梁处理
- name = '马家梁'
- majialiang_df = common_measurepoint(df[df['遥测名称'].str.contains(name)], name)
- # 添加富风处理
- name = '富风'
- fufeng_df = common_measurepoint(df[df['遥测名称'].str.contains(name)], name)
- # 添加坡底处理
- name = '坡底'
- podi_df = common_measurepoint(df[df['遥测名称'].str.contains(name)], name)
- # 添加贺家沟处理
- name = '贺家沟'
- hejiagou_df = common_measurepoint(df[df['遥测名称'].str.contains(name)], name)
- # result_df = pd.concat([youyu_df, pinglu_df, ruicheng_df, yuxian_df, gujiao_df, shilou_df])
|