| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512 |
- import numpy as np
- import pandas as pd
- from sklearn.neighbors import BallTree
- from typing import Dict, List, Optional, Union
- from functools import lru_cache
- class HealthAssessor:
- def __init__(self):
- "八个子系统"
- self.subsystem_config = {
- # 偏航系统
- 'YawSystem': {
- # 双馈
- 'dfig': {
- 'fixed': ['yaw_ang_1','yaw_ang_2','twist_ang_1','twist_ang_2','yaw_err_1','yaw_err_2','wind_dir_1','wind_dir_2','wind_dir_3','yaw_to_wind_ang_1',
- 'yaw_to_wind_ang_2','yaw_to_wind_ang_3','total_yaw_cnt','untwist_cnt_1','untwist_cnt_2','yaw_sts_1','yaw_sts_2','cw_yaw_sts_1','ccw_yaw_sts_1',
- 'cw_yaw_sts_2','ccw_yaw_sts_2','yaw_sys_prs','yaw_brk_prs','yaw_motor_brk','yaw_hyd_brk','yaw_brk_valve_sts'],
- },
- # 直驱
- 'direct': {
- 'fixed': ['yaw_ang_1','yaw_ang_2','twist_ang_1','twist_ang_2','yaw_err_1','yaw_err_2','wind_dir_1','wind_dir_2','wind_dir_3','yaw_to_wind_ang_1',
- 'yaw_to_wind_ang_2','yaw_to_wind_ang_3','total_yaw_cnt','untwist_cnt_1','untwist_cnt_2','yaw_sts_1','yaw_sts_2','cw_yaw_sts_1','ccw_yaw_sts_1',
- 'cw_yaw_sts_2','ccw_yaw_sts_2','yaw_sys_prs','yaw_brk_prs','yaw_motor_brk','yaw_hyd_brk','yaw_brk_valve_sts'],
- }
- },
- # 变桨系统
- 'PicthSystem': {
- # 双馈
- 'dfig': {
- 'fixed': ['pitch_ang_set_1','pitch_ang_set_2','pitch_ang_set_3','pitch_ang_set_4','pitch_ang_set_5','pitch_ang_set_6','pitch_ang_act_1','pitch_ang_act_2','pitch_ang_act_3','pitch_ang_act_4','pitch_ang_act_5','pitch_ang_act_16',
- 'pitch_ang_act_7','pitch_ang_act_7','pitch_ang_act_9','pitch_spd_1','pitch_spd_2','pitch_spd_3','pitch_spd_4','pitch_spd_5','pitch_spd_6','pitch_motor_pwr_1','pitch_motor_pwr_2',
- 'pitch_motor_pwr_3','pitch_motor_cur_1','pitch_motor_cur_2','pitch_motor_cur_3','pitch_motor_cur_4','pitch_motor_cur_5','pitch_motor_cur_6',
- 'pitch_motor_temp_1','pitch_motor_temp_2','pitch_motor_temp_3','pitch_motor_temp_4','pitch_motor_temp_5','pitch_motor_temp_6','pitch_cab_temp_1',
- 'pitch_cab_temp_2','pitch_cab_temp_3','pitch_cab_temp_4','pitch_cab_temp_5','pitch_cab_temp_6','pitch_bat_temp_1','pitch_bat_temp_2','pitch_bat_temp_3',
- 'pitch_bat_temp_4','pitch_bat_temp_5','pitch_bat_temp_6'],
- },
- # 直驱
- 'direct': {
- 'fixed': ['pitch_ang_set_1','pitch_ang_set_2','pitch_ang_set_3','pitch_ang_set_4','pitch_ang_set_5','pitch_ang_set_6','pitch_ang_act_1','pitch_ang_act_2','pitch_ang_act_3','pitch_ang_act_4','pitch_ang_act_5','pitch_ang_act_16',
- 'pitch_ang_act_7','pitch_ang_act_7','pitch_ang_act_9','pitch_spd_1','pitch_spd_2','pitch_spd_3','pitch_spd_4','pitch_spd_5','pitch_spd_6','pitch_motor_pwr_1','pitch_motor_pwr_2',
- 'pitch_motor_pwr_3','pitch_motor_cur_1','pitch_motor_cur_2','pitch_motor_cur_3','pitch_motor_cur_4','pitch_motor_cur_5','pitch_motor_cur_6',
- 'pitch_motor_temp_1','pitch_motor_temp_2','pitch_motor_temp_3','pitch_motor_temp_4','pitch_motor_temp_5','pitch_motor_temp_6','pitch_cab_temp_1',
- 'pitch_cab_temp_2','pitch_cab_temp_3','pitch_cab_temp_4','pitch_cab_temp_5','pitch_cab_temp_6','pitch_bat_temp_1','pitch_bat_temp_2','pitch_bat_temp_3',
- 'pitch_bat_temp_4','pitch_bat_temp_5','pitch_bat_temp_6'],
- }
- },
- # 主轴
- 'MainShaft': {
- # 双馈
- 'dfig': {
- 'fixed': ['main_shaft_spd_1','main_shaft_spd_2','main_shaft_spd_3','main_brg_temp_1','main_brg_temp_2','main_brg_temp_3','main_brg_temp_4','lube_oil_temp',
- 'gen_lube_level_sts','gen_lube_pulse_sts','gen_lube_pump_act','gen_brg_lube_level_sig','oil_prs'],
- },
- # 直驱
- 'direct': {
- 'fixed': ['main_shaft_spd_1','main_shaft_spd_2','main_shaft_spd_3','main_brg_temp_1','main_brg_temp_2','main_brg_temp_3','main_brg_temp_4','lube_oil_temp',
- 'gen_lube_level_sts','gen_lube_pulse_sts','gen_lube_pump_act','gen_brg_lube_level_sig','oil_prs'],
- }
- },
- # 齿轮箱
- 'Gearbox': {
- # 双馈
- 'dfig': {
- 'fixed': ['gearbox_spd_1','gearbox_spd_2','gearbox_spd_3','hss_brg_temp_1','hss_brg_temp_2','hss_brg_temp_3','hss_brg_temp_4','hss_brg_temp_5','iss_brg_temp_1',
- 'iss_brg_temp_2','iss_brg_temp_3','iss_brg_temp_4','lss_brg_temp_1','lss_brg_temp_2','lss_brg_temp_3','lss_brg_temp_4','gearbox_oil_temp_1','gearbox_oil_temp_2',
- 'gearbox_oil_temp_3','gb_out_oil_prs_1','gb_out_oil_prs_2','gb_out_oil_prs_3','gb_in_oil_prs_1','gb_in_oil_prs_2','gb_cool_water_temp'],
- },
- # 直驱
- 'direct': {
- 'fixed': ['gearbox_spd_1','gearbox_spd_2','gearbox_spd_3','hss_brg_temp_1','hss_brg_temp_2','hss_brg_temp_3','hss_brg_temp_4','hss_brg_temp_5','iss_brg_temp_1',
- 'iss_brg_temp_2','iss_brg_temp_3','iss_brg_temp_4','lss_brg_temp_1','lss_brg_temp_2','lss_brg_temp_3','lss_brg_temp_4','gearbox_oil_temp_1','gearbox_oil_temp_2',
- 'gearbox_oil_temp_3','gb_out_oil_prs_1','gb_out_oil_prs_2','gb_out_oil_prs_3','gb_in_oil_prs_1','gb_in_oil_prs_2','gb_cool_water_temp'],
- }
- },
- # 发电机
- 'Generator': {
- # 双馈
- 'dfig': {
- 'fixed': ['gen_spd_1','gen_spd_2','gen_spd_3','gen_spd_4','gen_de_brg_temp_1','gen_nde_brg_temp_1','gen_de_brg_temp_2','gen_nde_brg_temp_2','gen_de_brg_temp_3','gen_nde_brg_temp_3',
- 'rotor_brk_prs','rotor_temp_1','rotor_temp_2','rotor_temp_3','stator_cur','stator_temp','stator_wind_temp_1','stator_wind_temp_2','stator_wind_temp_3','stator_wind_temp_4',
- 'stator_wind_temp_5','stator_wind_temp_6','gen_in_water_temp','gen_out_water_temp_1','gen_out_water_temp_2','gen_in_air_temp_1','gen_in_air_temp_2','gen_out_air_temp_1','gen_out_air_temp_2'],
- },
- # 直驱
- 'direct': {
- 'fixed': ['gen_spd_1','gen_spd_2','gen_spd_3','gen_spd_4','gen_de_brg_temp_1','gen_nde_brg_temp_1','gen_de_brg_temp_2','gen_nde_brg_temp_2','gen_de_brg_temp_3','gen_nde_brg_temp_3',
- 'rotor_brk_prs','rotor_temp_1','rotor_temp_2','rotor_temp_3','stator_cur','stator_temp','stator_wind_temp_1','stator_wind_temp_2','stator_wind_temp_3','stator_wind_temp_4',
- 'stator_wind_temp_5','stator_wind_temp_6','gen_in_water_temp','gen_out_water_temp_1','gen_out_water_temp_2','gen_in_air_temp_1','gen_in_air_temp_2','gen_out_air_temp_1','gen_out_air_temp_2'],
- }
- },
- # 变流器
- 'Converter': {
- # 双馈
- 'dfig': {
- 'fixed': ['grid_ia_1','grid_ib_1','grid_ic_1','grid_ia_2','grid_ib_2','grid_ic_2','grid_ua_1','grid_ub_1','grid_uc_1','grid_ua_2','grid_ub_2','grid_uc_2','phase_ang_a_1','phase_ang_b_1','phase_ang_c_1',
- 'phase_ang_a_2','phase_ang_b_2','phase_ang_c_2','conv_grid_freq_1','conv_grid_freq_2','conv_grid_freq_3','conv_spd_1','conv_spd_2','conv_mc_temp_1','conv_mc_temp_2','conv_mc_temp_3','conv_mc_temp_4',
- 'conv_mc_temp_5','conv_mc_temp_6','conv_mc_temp_7','conv_mc_temp_8','conv_mc_temp_9','conv_mc_temp_10','conv_gc_temp_1','conv_gc_temp_2','conv_gc_temp_3','conv_gc_temp_4','conv_gc_temp_5','conv_gc_temp_6',
- 'conv_gc_temp_7','conv_gc_temp_8','conv_gc_temp_9','conv_gc_temp_10','conv_fault_1','conv_fault_2','conv_fault_3','conv_fault_4','conv_err_1','conv_err_2','conv_alarm_1','conv_alarm_2','conv_cool_in_temp_1',
- 'conv_cool_in_temp_2','conv_cool_out_temp_1','conv_cool_out_temp_2','conv_in_air_temp','conv_out_air_temp' ],
- },
- # 直驱
- 'direct': {
- 'fixed': ['grid_ia_1','grid_ib_1','grid_ic_1','grid_ia_2','grid_ib_2','grid_ic_2','grid_ua_1','grid_ub_1','grid_uc_1','grid_ua_2','grid_ub_2','grid_uc_2','phase_ang_a_1','phase_ang_b_1','phase_ang_c_1',
- 'phase_ang_a_2','phase_ang_b_2','phase_ang_c_2','conv_grid_freq_1','conv_grid_freq_2','conv_grid_freq_3','conv_spd_1','conv_spd_2','conv_mc_temp_1','conv_mc_temp_2','conv_mc_temp_3','conv_mc_temp_4',
- 'conv_mc_temp_5','conv_mc_temp_6','conv_mc_temp_7','conv_mc_temp_8','conv_mc_temp_9','conv_mc_temp_10','conv_gc_temp_1','conv_gc_temp_2','conv_gc_temp_3','conv_gc_temp_4','conv_gc_temp_5','conv_gc_temp_6',
- 'conv_gc_temp_7','conv_gc_temp_8','conv_gc_temp_9','conv_gc_temp_10','conv_fault_1','conv_fault_2','conv_fault_3','conv_fault_4','conv_err_1','conv_err_2','conv_alarm_1','conv_alarm_2','conv_cool_in_temp_1',
- 'conv_cool_in_temp_2','conv_cool_out_temp_1','conv_cool_out_temp_2','conv_in_air_temp','conv_out_air_temp' ],
- }
- },
- # 液压系统
- 'HPU': {
- # 双馈
- 'dfig': {
- 'fixed': ['hyd_sys_prs_1','hyd_sys_prs_2','hyd_sys_prs_3','hyd_pump_prs','hyd_pump_start_cnt','oil_pump_motor','hyd_tank_level','hyd_oil_temp','hyd_oil_prs','hyd_level_sts_1','hyd_level_sts_2','hyd_oil_temp_sts'],
- },
- # 直驱
- 'direct': {
- 'fixed': ['hyd_sys_prs_1','hyd_sys_prs_2','hyd_sys_prs_3','hyd_pump_prs','hyd_pump_start_cnt','oil_pump_motor','hyd_tank_level','hyd_oil_temp','hyd_oil_prs','hyd_level_sts_1','hyd_level_sts_2','hyd_oil_temp_sts'],
- }
- },
- # 主控系统
- 'MCS': {
- # 双馈
- 'dfig': {
- 'fixed': ['wtg_sts_1','wtg_sts_2','wtg_sts_3','wtg_sts_4','wind_spd_1','wind_spd_2','wind_spd_3','wind_spd_4','p_active_1','p_active_2','p_active_3','p_active_4','p_reactive_1','p_reactive_2','p_reactive_3','rotor_spd_1',
- 'rotor_spd_2','rotor_spd_3','safety_chain_1','safety_chain_2','safety_chain_3','nacelle_estop_1','nacelle_estop_2','nacelle_estop_3','tower_estop_1','tower_estop_2','tower_estop_3','hand_estop','nacelle_in_temp_1',
- 'nacelle_in_temp_2','nacelle_out_temp_1','nacelle_out_temp_2','tower_fa_vib_1','tower_ss_vib_1','tower_fa_vib_2','tower_ss_vib_2','tower_fa_vib_3','tower_ss_vib_3','tower_env_temp_1','tower_env_temp_2','nacelle_cab_temp_1',
- 'nacelle_cab_temp_2','tower_cab_temp_1','tower_cab_temp_2','nacelle_ups_1','nacelle_ups_2','nacelle_ups_3','tower_ups_1','tower_ups_2','tower_ups_3','tower_ups_4' ],
- },
- # 直驱
- 'direct': {
- 'fixed': ['wtg_sts_1','wtg_sts_2','wtg_sts_3','wtg_sts_4','wind_spd_1','wind_spd_2','wind_spd_3','wind_spd_4','p_active_1','p_active_2','p_active_3','p_active_4','p_reactive_1','p_reactive_2','p_reactive_3','rotor_spd_1',
- 'rotor_spd_2','rotor_spd_3','safety_chain_1','safety_chain_2','safety_chain_3','nacelle_estop_1','nacelle_estop_2','nacelle_estop_3','tower_estop_1','tower_estop_2','tower_estop_3','hand_estop','nacelle_in_temp_1',
- 'nacelle_in_temp_2','nacelle_out_temp_1','nacelle_out_temp_2','tower_fa_vib_1','tower_ss_vib_1','tower_fa_vib_2','tower_ss_vib_2','tower_fa_vib_3','tower_ss_vib_3','tower_env_temp_1','tower_env_temp_2','nacelle_cab_temp_1',
- 'nacelle_cab_temp_2','tower_cab_temp_1','tower_cab_temp_2','nacelle_ups_1','nacelle_ups_2','nacelle_ups_3','tower_ups_1','tower_ups_2','tower_ups_3','tower_ups_4' ],
- }
- },
-
- }
- # 嵌入源代码的MSET实现
- self.mset = self._create_mset_core()
- def _create_mset_core(self):
- """创建MSET核心计算模块"""
- class MSETCore:
- def __init__(self):
- self.matrixD = None
- self.normalDataBallTree = None
- self.healthyResidual = None
- def calcSimilarity(self, x, y):
- """优化后的相似度计算"""
- diff = np.array(x) - np.array(y)
- return 1 / (1 + np.sqrt(np.sum(diff ** 2)))
- def genDLMatrix(self, trainDataset, dataSize4D=15, dataSize4L=5):
- """优化矩阵生成过程"""
- m, n = trainDataset.shape
- # 快速选择极值点
- min_indices = np.argmin(trainDataset, axis=0)
- max_indices = np.argmax(trainDataset, axis=0)
- unique_indices = np.unique(np.concatenate([min_indices, max_indices]))
- self.matrixD = trainDataset[unique_indices].copy()
- # 快速填充剩余点
- remaining_indices = np.setdiff1d(np.arange(m), unique_indices)
- np.random.shuffle(remaining_indices)
- needed = max(0, dataSize4D - len(unique_indices))
- if needed > 0:
- self.matrixD = np.vstack([self.matrixD, trainDataset[remaining_indices[:needed]]])
- # 使用与源代码一致的BallTree参数
- self.normalDataBallTree = BallTree(
- self.matrixD,
- leaf_size=40,
- metric=lambda i, j: 1 - self.calcSimilarity(i, j) # 自定义相似度
- )
- # 使用所有数据计算残差
- self.healthyResidual = self.calcResidualByLocallyWeightedLR(trainDataset)
- return 0
- def calcResidualByLocallyWeightedLR(self, newStates):
- """优化残差计算"""
- if len(newStates.shape) == 1:
- newStates = newStates.reshape(-1, 1)
- dist, iList = self.normalDataBallTree.query(
- newStates,
- k=min(10, len(self.matrixD)),
- return_distance=True
- )
- weights = 1 / (dist + 1e-5)
- weights /= weights.sum(axis=1)[:, np.newaxis]
- est_X = np.sum(weights[:, :, np.newaxis] * self.matrixD[iList[0]], axis=1)
- return est_X - newStates
- def calcSPRT(self, newsStates, feature_weight, alpha=0.1, beta=0.1, decisionGroup=1):
- """优化SPRT计算"""
- stateResidual = self.calcResidualByLocallyWeightedLR(newsStates)
- weightedStateResidual = np.dot(stateResidual, feature_weight)
- weightedHealthyResidual = np.dot(self.healthyResidual, feature_weight)
- mu0 = np.mean(weightedHealthyResidual)
- sigma0 = np.std(weightedHealthyResidual)
- # 向量化计算
- n = len(newsStates)
- if n < decisionGroup:
- return [50] # 中性值
- rolling_mean = np.convolve(weightedStateResidual, np.ones(decisionGroup) / decisionGroup, 'valid')
- si = (rolling_mean - mu0) * (rolling_mean + mu0 - 2 * mu0) / (2 * sigma0 ** 2)
- lowThres = np.log(beta / (1 - alpha))
- highThres = np.log((1 - beta) / alpha)
- si = np.clip(si, lowThres, highThres)
- si = np.where(si > 0, si / highThres, si / lowThres)
- flag = 100 - si * 100
- # 填充不足的部分
- if len(flag) < n:
- flag = np.pad(flag, (0, n - len(flag)), mode='edge')
- return flag.tolist()
- def CRITIC_prepare(self, data, flag=1):
- """标准化处理"""
- data = data.astype(float)
- numeric_cols = data.select_dtypes(include=[np.number]).columns
- negative_cols = [col for col in numeric_cols
- if any(kw in col for kw in ['temperature'])]
- positive_cols = list(set(numeric_cols) - set(negative_cols))
- # 负向标准化
- if negative_cols:
- max_val = data[negative_cols].max()
- min_val = data[negative_cols].min()
- data[negative_cols] = (max_val - data[negative_cols]) / (max_val - min_val).replace(0, 1e-5)
- # 正向标准化
- if positive_cols:
- max_val = data[positive_cols].max()
- min_val = data[positive_cols].min()
- data[positive_cols] = (data[positive_cols] - min_val) / (max_val - min_val).replace(0, 1e-5)
- return data
- def CRITIC(self, data):
- """CRITIC权重计算(支持单特征)"""
- try:
- # 处理单特征情况
- if len(data.columns) == 1:
- return pd.Series([1.0], index=data.columns)
-
- data_norm = self.CRITIC_prepare(data.copy())
- std = data_norm.std(ddof=0).clip(lower=0.01)
-
- # 计算相关系数矩阵(添加异常处理)
- try:
- corr = np.abs(np.corrcoef(data_norm.T))
- np.fill_diagonal(corr, 0)
- conflict = np.sum(1 - corr, axis=1)
- except:
- # 如果计算相关系数失败,使用等权重
- return pd.Series(np.ones(len(data.columns))/len(data.columns))
-
- info = std * conflict
- weights = info / info.sum()
- return pd.Series(weights, index=data.columns)
- except Exception as e:
- print(f"CRITIC计算失败: {str(e)}")
- return pd.Series(np.ones(len(data.columns))/len(data.columns))
- def ahp(self, matrix):
- """AHP权重计算"""
- eigenvalue, eigenvector = np.linalg.eig(matrix)
- max_idx = np.argmax(eigenvalue)
- weight = eigenvector[:, max_idx].real
- return weight / weight.sum(), eigenvalue[max_idx].real
- return MSETCore()
- def assess_turbine(self, engine_code, data, mill_type, wind_turbine_name):
- """评估单个风机"""
- results = {
- "engine_code": engine_code,
- "wind_turbine_name": wind_turbine_name,
- "mill_type": mill_type,
- "total_health_score": None,
- "subsystems": {},
- "assessed_subsystems": []
- }
- # 各子系统评估
- subsystems_to_assess = [
- ('YawSystem', self.subsystem_config['YawSystem'], 2),
- ('PicthSystem', self.subsystem_config['PicthSystem'], 2),
- ('MainShaft', self.subsystem_config['MainShaft'], 2),
- ('Gearbox', self.subsystem_config['Gearbox'] if mill_type == 'dfig' else None, 2),
- ('Generator', self.subsystem_config['Generator'], 2),
- ('Converter', self.subsystem_config['Converter'], 2),
- ('HPU', self.subsystem_config['HPU'], 2),
- ('MCS', self.subsystem_config['MCS'], 2),
- ]
- for subsystem, config, min_features in subsystems_to_assess:
- if config is None:
- continue
- features = self._get_subsystem_features(config, data)
- # 功能1:无论特征数量是否足够都输出结果
- if len(features) >= min_features:
- assessment = self._assess_subsystem(data[features])
- else:
- assessment = {
- 'health_score': -1, # 特征不足时输出'-'
- 'weights': {},
- 'message': f'Insufficient features (required {min_features}, got {len(features)})'
- }
- print('结果打印',assessment)
- # 功能3:删除features内容
- if 'features' in assessment:
- del assessment['features']
- # 最终清理:确保没有NaN值
- for sys, result in results["subsystems"].items():
- if isinstance(result['health_score'], float) and np.isnan(result['health_score']):
- result['health_score'] = -1
- result['message'] = (result.get('message') or '') + '; NaN detected'
-
- if isinstance(results["total_health_score"], float) and np.isnan(results["total_health_score"]):
- results["total_health_score"] = -1
- results["subsystems"][subsystem] = assessment
- # 计算整机健康度(使用新字段名)
- if results["subsystems"]:
- # 只计算健康值为数字的子系统
- valid_subsystems = [
- k for k, v in results["subsystems"].items()
- if isinstance(v['health_score'], (int, float)) and v['health_score'] >= 0
- ]
- if valid_subsystems:
- weights = self._get_subsystem_weights(valid_subsystems)
- health_scores = [results["subsystems"][sys]['health_score'] for sys in valid_subsystems]
- results["total_health_score"] = float(np.dot(health_scores, weights))
- results["assessed_subsystems"] = valid_subsystems
- return results
- def _get_all_possible_features(self, mill_type, available_columns):
- """
- 获取所有可能的特征列
-
- 参数:
- mill_type: 机型类型
- available_columns: 数据库实际存在的列名列表
- """
- features = []
- available_columns_lower = [col.lower() for col in available_columns] # 不区分大小写匹配
- # for subsys_name, subsys_config in assessor.subsystem_config.items():
- for subsys_name, subsys_config in self.subsystem_config.items():
- # 处理子系统配置
- if subsys_name == 'generator':
- config = subsys_config.get(mill_type, {})
- elif subsys_name == 'drive_train' and mill_type != 'dfig':
- continue
- else:
- config = subsys_config
- # 处理固定特征
- if 'fixed' in config:
- for f in config['fixed']:
- if f in available_columns:
- features.append(f)
- # 处理关键词特征
- if 'keywords' in config:
- for rule in config['keywords']:
- matched = []
- include_kws = [kw.lower() for kw in rule['include']]
- exclude_kws = [ex.lower() for ex in rule.get('exclude', [])]
- for col in available_columns:
- col_lower = col.lower()
- # 检查包含关键词
- include_ok = all(kw in col_lower for kw in include_kws)
- # 检查排除关键词
- exclude_ok = not any(ex in col_lower for ex in exclude_kws)
- if include_ok and exclude_ok:
- matched.append(col)
- if len(matched) >= rule.get('min_count', 1):
- features.extend(matched)
- return list(set(features)) # 去重
- def _get_subsystem_features(self, config: Dict, data: pd.DataFrame) -> List[str]:
- """最终版特征获取方法"""
- available_features = []
- # 固定特征检查(要求至少10%非空)
- if 'fixed' in config:
- for f in config['fixed']:
- if f in data.columns and data[f].notna().mean() > 0.1:
- available_features.append(f)
- print(f"匹配到的固定特征: {available_features}")
- # 关键词特征检查
- if 'keywords' in config:
- for rule in config['keywords']:
- matched = [
- col for col in data.columns
- if all(kw.lower() in col.lower() for kw in rule['include'])
- and not any(ex.lower() in col.lower() for ex in rule.get('exclude', []))
- and data[col].notna().mean() > 0.1 # 数据有效性检查
- ]
- if len(matched) >= rule.get('min_count', 1):
- available_features.extend(matched)
- print(f"匹配到的关键词特征: {available_features}")
- return list(set(available_features))
-
- def _assess_subsystem(self, data: pd.DataFrame) -> Dict:
- """评估子系统(支持单特征)"""
- # 数据清洗
- clean_data = data.dropna()
- if len(clean_data) < 10: # 降低最小样本量要求(原为20)
- return {'health_score': -1, 'weights': {}, 'features': list(data.columns), 'message': 'Insufficient data'}
- try:
- # 标准化
- normalized_data = self.mset.CRITIC_prepare(clean_data)
- # 计算权重 - 处理单特征情况
- if len(normalized_data.columns) == 1:
- weights = pd.Series([1.0], index=normalized_data.columns)
- else:
- weights = self.mset.CRITIC(normalized_data)
- # MSET评估
- health_score = self._run_mset_assessment(normalized_data.values, weights.values)
- bins = [0, 10, 20, 30, 40, 50, 60, 70, 80]
- adjust_values = [87, 77, 67, 57, 47, 37, 27, 17, 7]
- # def adjust_score(score):
- # for i in range(len(bins)):
- # if score < bins[i]:
- # return score + adjust_values[i-1]
- # return score #
- # adjusted_score = adjust_score(health_score) #
- # if adjusted_score >= 100:
- # adjusted_score = 92.8
- return {
- 'health_score': float(health_score),
- 'weights': weights.to_dict(),
- 'features': list(data.columns)
- }
- except Exception as e:
- return {'health_score': -1, 'weights': {}, 'features': list(data.columns), 'message': str(e)}
-
- @lru_cache(maxsize=10)
- def _get_mset_model(self, train_data: tuple):
- """缓存MSET模型"""
- # 注意:由于lru_cache需要可哈希参数,这里使用元组
- arr = np.array(train_data)
- model = self._create_mset_core()
- model.genDLMatrix(arr)
- return model
- def _run_mset_assessment(self, data: np.ndarray, weights: np.ndarray) -> float:
- """执行MSET评估"""
- # 检查权重有效性
- if np.isnan(weights).any() or np.isinf(weights).any():
- weights = np.ones_like(weights) / len(weights) # 重置为等权重
- # 分割训练集和测试集
- split_idx = len(data) // 2
- train_data = data[:split_idx]
- test_data = data[split_idx:]
- # 使用缓存模型
- try:
- model = self._get_mset_model(tuple(map(tuple, train_data)))
- flags = model.calcSPRT(test_data, weights)
-
- # 过滤NaN值并计算均值
- valid_flags = [x for x in flags if not np.isnan(x)]
- if not valid_flags:
- return 50.0 # 默认中性值
-
- return float(np.mean(valid_flags))
- except Exception as e:
- print(f"MSET评估失败: {str(e)}")
- return 50.0 # 默认中性值
-
- def _get_subsystem_weights(self, subsystems: List[str]) -> np.ndarray:
- """生成等权重的子系统权重向量"""
- n = len(subsystems)
- if n == 0:
- return np.array([])
- # 直接返回等权重向量
- return np.ones(n) / n
|