Przeglądaj źródła

修改readme与功率散点2D图分析员(合同功率曲线取值bug)

chenhongyan1989 2 tygodni temu
rodzic
commit
291100d564
2 zmienionych plików z 16 dodań i 170 usunięć
  1. 2 2
      README.md
  2. 14 168
      dataAnalysisBusiness/algorithm/powerScatter2DAnalyst.py

+ 2 - 2
README.md

@@ -132,14 +132,14 @@ pip download -r requirements.txt -d download
   地址(mysql):106.120.102.238:10336
   业务数据库(测试)名:energy_data
   业务数据库(生产)名:energy_data_prod
-  账户名:admin
+  账户名:root
   密码:admin123456
 
   地址(mysql):106.120.102.238:16306
   基础数据库(测试)名:energy
   基础数据库(生产)名:energy_prod
   基础数据库(演示)名:energy_show
-  账户名:root
+  账户名:admin
   密码:admin123456
 
   地址(TIDB):(无外网)

+ 14 - 168
dataAnalysisBusiness/algorithm/powerScatter2DAnalyst.py

@@ -1,13 +1,10 @@
 import os
 from datetime import datetime
 
-import numpy as np
 import pandas as pd
-import plotly.graph_objects as go
 from algorithmContract.confBusiness import *
 from algorithmContract.contract import Contract
 from behavior.analystWithGoodBadPoint import AnalystWithGoodBadPoint
-from plotly.subplots import make_subplots
 
 
 class PowerScatter2DAnalyst(AnalystWithGoodBadPoint):
@@ -31,14 +28,9 @@ class PowerScatter2DAnalyst(AnalystWithGoodBadPoint):
         dataFrame = self.userDataFrame(dictionary, conf.dataContract.configAnalysis, self)
         turbineInfos = self.common.getTurbineInfos(conf.dataContract.dataFilter.powerFarmID, turbineCodes, self.turbineInfo)
         if len(dataFrame) <= 0:
-            print("After screening for blade pitch angle less than the configured value, plot power curve scatter points without data")
+            self.logger.info("After screening for blade pitch angle less than the configured value, plot power curve scatter points without data")
             return
-        grouped = self.dataFrameContractOfTurbine.groupby(
-            [Field_PowerFarmCode, Field_MillTypeCode])
-
-        for groupByKey, contractPowerCurveOfMillType in grouped:
-            break
-        return self.drawOfPowerCurveScatter(dataFrame, turbineInfos,outputAnalysisDir, conf, contractPowerCurveOfMillType)
+        return self.drawOfPowerCurveScatter(dataFrame, turbineInfos,outputAnalysisDir, conf, self.dataFrameContractOfTurbine)
 
     def drawOfPowerCurveScatter(self, dataFrame: pd.DataFrame,  turbineModelInfo: pd.Series, outputAnalysisDir, conf: Contract, dataFrameGuaranteePowerCurve: pd.DataFrame):
         """
@@ -50,9 +42,6 @@ class PowerScatter2DAnalyst(AnalystWithGoodBadPoint):
         outputAnalysisDir (str): 分析输出目录。
         confData (ConfBusiness): 配置
         """
-        x_name = '风速'
-        y_name = '功率'
-
         #机型切入风速 series
         cutInWsField = self.turbineModelInfo[Field_CutInWS]
         cut_in_ws = cutInWsField.min() - 1 if cutInWsField.notna().any() else 2
@@ -64,137 +53,24 @@ class PowerScatter2DAnalyst(AnalystWithGoodBadPoint):
         # 按设备名分组数据
         grouped = dataFrame.groupby([Field_NameOfTurbine, Field_CodeOfTurbine])
         result_rows = []
-
-        # 定义固定的颜色映射列表
-        fixed_colors = [
-                "#3E409C",
-                "#476CB9",
-                "#3586BF",
-                "#4FA4B5",
-                "#52A3AE",
-                "#60C5A3",
-                "#85D0AE",
-                "#A8DCA2",
-                "#CFEE9E",
-                "#E4F39E",
-                "#EEF9A7",
-                "#FBFFBE",
-                "#FDF1A9",
-                "#FFE286",
-                "#FFC475",
-                "#FCB06C",
-                "#F78F4F",
-                "#F96F4A",
-                "#E4574C",
-                "#CA3756",
-                "#AF254F"
-        ]
-
-        # 将 fixed_colors 转换为 Plotly 的 colorscale 格式
-        fixed_colorscale = [
-            [i / (len(fixed_colors) - 1), color] for i, color in enumerate(fixed_colors)
-        ]
-        fixed_colors_points = [
-            "#F96F4A",
-            "#FFC475",
-            "#FBFFBE",
-            "#85D0AE",
-            "#3586BF",
-            "#3E409C"
-
-        ]
-
         # 遍历每个设备的数据
         for name, group in grouped:
-            fig = make_subplots()
-
-            # 提取月份
-            group['month'] = group['monthIntTime'].apply(lambda x: datetime.fromtimestamp(x).month)
-            unique_months = group['month'].unique()
-
-            # 计算时间跨度
-            time_span_months = len(unique_months)
-
-            if time_span_months >= 6:
-                # 绘制散点图(时间跨度大于等于6个月)
-                scatter = go.Scatter(x=group[Field_WindSpeed],
-                                     y=group[Field_ActiverPower],
-                                     mode='markers',
-                                     marker=dict(
-                                         color=group['monthIntTime'],
-                                         colorscale=fixed_colorscale,  # 使用自定义的 colorscale
-                                         size=3,
-                                         opacity=0.7,
-                                         colorbar=dict(
-                                             tickvals=np.linspace(
-                                                 group['monthIntTime'].min(), group['monthIntTime'].max(), 6),
-                                             ticktext=[datetime.fromtimestamp(ts).strftime(
-                                                 '%Y-%m') for ts in np.linspace(group['monthIntTime'].min(), group['monthIntTime'].max(), 6)],
-                                             thickness=18,
-                                             len=1,  # 设置颜色条的长度,使其占据整个图的高度
-                                             outlinecolor='rgba(255,255,255,0)'
-                                         ),
-                                         showscale=True
-                                     ),
-                                     showlegend=False)  # 不显示散点图的 legend,用 colorbar 代替
-                fig.add_trace(scatter)
-            else:
-                # 绘制散点图(时间跨度小于6个月)
-                for i, month in enumerate(unique_months):
-                    month_data = group[group['month'] == month]
-                    # 使用固定的颜色列表
-                    color = fixed_colors_points[i % len(fixed_colors_points)]
-                    scatter = go.Scatter(x=month_data[Field_WindSpeed],
-                                         y=month_data[Field_ActiverPower],
-                                         mode='markers',
-                                         marker=dict(
-                                             color=color,
-                                             size=3,
-                                             opacity=0.7
-                                         ),
-                                         name=f'{datetime.fromtimestamp(month_data["monthIntTime"].iloc[0]).strftime("%Y-%m")}',
-                                         showlegend=True)
-                    fig.add_trace(scatter)
-
-           # 绘制合同功率曲线
-            line = go.Scatter(x=dataFrameGuaranteePowerCurve[Field_WindSpeed],
-                              y=dataFrameGuaranteePowerCurve[Field_ActiverPower],
-                              mode='lines+markers',
-                              marker=dict(color='gray', size=7),
-                              name='合同功率曲线')
-            fig.add_trace(line, secondary_y=False)
-
-            # 设置图形布局
-            fig.update_layout(
-                title=f'机组: {name[0]}',
-                xaxis=dict(title=x_name,
-                           range=[cut_in_ws, 25],
-                           tickmode='linear', tick0=0, dtick=1,
-                           tickangle=-45),
-                yaxis=dict(title=y_name,
-                           dtick=self.axisStepActivePower,
-                           range=[self.axisLowerLimitActivePower,
-                                  self.axisUpperLimitActivePower]
-                           ),
-                legend=dict(yanchor="bottom", y=0, xanchor="right", x=1, font=dict(
-                    size=10), bgcolor='rgba(255,255,255,0)')
-            )
-            # 确保从 Series 中提取的是具体的值
-            engineTypeCode = turbineModelInfo.get(Field_MillTypeCode, "")
-            if isinstance(engineTypeCode, pd.Series):
-                engineTypeCode = engineTypeCode.iloc[0]
-
-            engineTypeName = turbineModelInfo.get(Field_MachineTypeCode, "")
-            if isinstance(engineTypeName, pd.Series):
-                engineTypeName = engineTypeName.iloc[0]
-              # 使用 apply() 对每个元素调用 datetime.fromtimestamp
+            #获取当前风机信息dataFrame
+            currentEngineDataFrame = turbineModelInfo[turbineModelInfo[Field_CodeOfTurbine]==name[1]]
+            #获取当前机型
+            millTypeCode = currentEngineDataFrame.get(Field_MillTypeCode, "").iloc[0]
+            #当前机型合同功率曲线dataFrame
+            currentMillTypePowerDataFrame = dataFrameGuaranteePowerCurve[dataFrameGuaranteePowerCurve[Field_MillTypeCode] == millTypeCode]
+            # 获取机型的名字(machine_type_code)
+            engineTypeName = self.common.getTurbineModelByCode(millTypeCode, self.turbineModelInfo)[Field_MachineTypeCode]
+            # 使用 apply() 对每个元素调用 datetime.fromtimestamp
             group['monthIntTime'] = group['monthIntTime'].apply(lambda x: datetime.fromtimestamp(x).strftime('%Y-%m'))
             # 定义要替换的空值类型
             na_values = {pd.NA, float('nan')}
             # 构建最终的JSON对象
             json_output = {
                 "analysisTypeCode": "逐月有功功率散点2D分析",
-                "engineCode":  engineTypeCode,
+                "engineCode":  millTypeCode,
                 "engineTypeName": engineTypeName,
                 "xaixs": "风速(m/s)",
                 "yaixs": "有功功率(kW)",
@@ -214,24 +90,12 @@ class PowerScatter2DAnalyst(AnalystWithGoodBadPoint):
                     },
                     {# 提取合同功率曲线数据
                         "enginName": "合同功率曲线",
-                        "xData":dataFrameGuaranteePowerCurve[Field_WindSpeed].replace(na_values, None).tolist(),
-                        "yData":dataFrameGuaranteePowerCurve[Field_ActiverPower].replace(na_values, None).tolist(),
+                        "xData":currentMillTypePowerDataFrame[Field_WindSpeed].replace(na_values, None).tolist(),
+                        "yData":currentMillTypePowerDataFrame[Field_ActiverPower].replace(na_values, None).tolist(),
                         "zData": [],
                         "mode":"lines+markers"
                     }]
             }
-
-            # 保存图像
-            # pngFileName = f"{name[0]}-scatter.png"
-            # pngFilePath = os.path.join(outputAnalysisDir, pngFileName)
-            # fig.write_image(pngFilePath, scale=3)
-
-            # # 保存HTML
-            # htmlFileName = f"{name[0]}-scatter.html"
-            # htmlFilePath = os.path.join(outputAnalysisDir, htmlFileName)
-            # fig.write_html(htmlFilePath)
-
-
             # 将JSON对象保存到文件
             output_json_path = os.path.join(outputAnalysisDir, f"{name[0]}-scatter.json")
             with open(output_json_path, 'w', encoding='utf-8') as f:
@@ -248,24 +112,6 @@ class PowerScatter2DAnalyst(AnalystWithGoodBadPoint):
                 Field_Return_IsSaveDatabase: True
             })
 
-            # result_rows.append({
-            #     Field_Return_TypeAnalyst: self.typeAnalyst(),
-            #     Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
-            #     Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
-            #     Field_CodeOfTurbine: name[1],
-            #     Field_Return_FilePath: pngFilePath,
-            #     Field_Return_IsSaveDatabase: False
-            # })
-
-            # result_rows.append({
-            #     Field_Return_TypeAnalyst: self.typeAnalyst(),
-            #     Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
-            #     Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
-            #     Field_CodeOfTurbine: name[1],
-            #     Field_Return_FilePath: htmlFilePath,
-            #     Field_Return_IsSaveDatabase: True
-            # })
-
 
         result_df = pd.DataFrame(result_rows)
         return result_df