import os import pandas as pd import numpy as np import plotly.graph_objects as go from plotly.subplots import make_subplots from behavior.analystNotFilter import AnalystNotFilter from utils.directoryUtil import DirectoryUtil as dir import matplotlib.pyplot as plt from algorithmContract.confBusiness import * from algorithmContract.contract import Contract class WindDirectionFrequencyAnalyst(AnalystNotFilter): def typeAnalyst(self): return "wind_direction_frequency" def turbinesAnalysis(self, outputAnalysisDir, conf: Contract, turbineCodes): dictionary=self.processTurbineData(turbineCodes,conf,[Field_DeviceCode,Field_Time,Field_WindDirection,Field_WindSpeed,Field_ActiverPower]) dataFrameMerge=self.userDataFrame(dictionary,conf.dataContract.configAnalysis,self) return self.windRoseAnalysis(dataFrameMerge, outputAnalysisDir, conf) def windRoseAnalysis(self, dataFrameMerge: pd.DataFrame, outputAnalysisDir, conf: Contract): # 检查所需列是否存在 required_columns = {Field_WindDirection, Field_WindSpeed} if not required_columns.issubset(dataFrameMerge.columns) or dataFrameMerge[Field_WindDirection].isna().all() or dataFrameMerge[Field_WindSpeed].isna().all(): msg=f"DataFrame缺少必要的列及值。涉及的列有: {required_columns}" # raise ValueError(msg) self.logger.warning(msg) return pd.DataFrame() # 风速区间 bins = [0, 3, 6, 9, np.inf] speed_labels = ['[0,3)', '[3,6)', '[6,9)', '>=9'] wind_directions = np.arange(0, 360, 22.5) colorscale = { '[0,3)': 'rgba(247.0, 251.0, 255.0, 1.0)', '[3,6)': 'rgba(171.33333333333334, 207.66666666666666, 229.66666666666669, 1.0)', '[6,9)': 'rgba(55.0, 135.0, 192.33333333333334, 1.0)', '>=9': 'rgba(8.0, 48.0, 107.0, 1.0)' } # 按设备名分组数据 grouped = dataFrameMerge.groupby([Field_NameOfTurbine, Field_CodeOfTurbine]) result_rows = [] for name, group in grouped: speed_bins = pd.cut( group[Field_WindSpeed], bins=bins, labels=speed_labels) # 调整风向数据以使东方为0度 # adjusted_wind_dir = (group[Field_WindDirection] - 90) % 360 # group['风向分组'] = pd.cut(adjusted_wind_dir, bins=wind_directions, labels=wind_directions[:-1]) group['风向分组'] = pd.cut( group[Field_WindDirection], bins=wind_directions, labels=wind_directions[:-1]) # 初始化子图,设定为极坐标 fig = make_subplots(rows=1, cols=1, specs=[[{'type': 'polar'}]]) for label in speed_labels: subset = group[speed_bins == label] counts = subset['风向分组'].value_counts().reindex( wind_directions[:-1], fill_value=0) # 转换为百分比 percentage = (counts / counts.sum()) * 100 # 创建 Barpolar 跟踪,并应用单色渐变 trace = go.Barpolar( r=percentage.values, theta=counts.index, # 这里的角度已经适配上北下南左西右东的布局 name=label, marker_color=colorscale[label], # 应用颜色尺度 marker_showscale=False, # 不显示颜色条 marker_line_color='white', # 设置线条颜色,增加扇区之间的分隔 marker_line_width=1 # 设置线条宽度 ) fig.add_trace(trace) # 设置图表的一些基本属性 fig.update_layout( title={ "text": f"机组: {name[0]}", #"x": 0.5 }, polar=dict( radialaxis=dict(visible=True), angularaxis=dict( tickmode="array", tickvals=wind_directions, # 明确标注北、东、南、西等方向,以适应以北为0度的布局 ticktext=['N', 'NNE', 'NE', 'ENE', 'E', 'ESE', 'SE', 'SSE', 'S', 'SSW', 'SW', 'WSW', 'W', 'WNW', 'NW', 'NNW'] # 更新角度标签,以适应以东为0度的布局 # ticktext=['E', 'ESE', 'SE', 'SSE', 'S', 'SSW', 'SW', 'WSW', 'W', 'WNW', 'NW', 'NNW', 'N', 'NNE', 'NE', 'ENE'] ) ), legend_title="风速", margin=dict(t=50, b=10) # t为顶部(top)间距,b为底部(bottom)间距 ) # 保存图像 filePathOfImage = os.path.join(outputAnalysisDir, f"{name[0]}.png") fig.write_image(filePathOfImage, scale=3) filePathOfHtml = os.path.join(outputAnalysisDir, f"{name[0]}.html") fig.write_html(filePathOfHtml) result_rows.append({ Field_Return_TypeAnalyst: self.typeAnalyst(), Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID, Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum, Field_CodeOfTurbine: name[1], Field_Return_FilePath: filePathOfImage, Field_Return_IsSaveDatabase: False }) result_rows.append({ Field_Return_TypeAnalyst: self.typeAnalyst(), Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID, Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum, Field_CodeOfTurbine: name[1], Field_Return_FilePath: filePathOfHtml, Field_Return_IsSaveDatabase: True }) result_df = pd.DataFrame(result_rows) return result_df