temperatureEnvironmentAnalyst.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247
  1. import os
  2. import numpy as np
  3. import pandas as pd
  4. import plotly.graph_objects as go
  5. from algorithmContract.confBusiness import *
  6. from algorithmContract.contract import Contract
  7. from behavior.analystWithGoodBadLimitPoint import AnalystWithGoodBadLimitPoint
  8. from geopy.distance import geodesic
  9. from plotly.subplots import make_subplots
  10. class TemperatureEnvironmentAnalyst(AnalystWithGoodBadLimitPoint):
  11. """
  12. 风电机组环境温度传感器分析
  13. """
  14. def typeAnalyst(self):
  15. return "temperature_environment"
  16. def turbinesAnalysis(self, outputAnalysisDir, conf: Contract, turbineCodes):
  17. dictionary = self.processTurbineData(turbineCodes, conf, [
  18. Field_DeviceCode, Field_Time,Field_EnvTemp, Field_WindSpeed, Field_ActiverPower])
  19. dataFrameOfTurbines = self.userDataFrame(
  20. dictionary, conf.dataContract.configAnalysis, self)
  21. # 检查所需列是否存在
  22. required_columns = {Field_CodeOfTurbine,Field_EnvTemp}
  23. if not required_columns.issubset(dataFrameOfTurbines.columns):
  24. raise ValueError(f"DataFrame缺少必要的列。需要的列有: {required_columns}")
  25. # 环境温度分析
  26. turbineEnvTempData = dataFrameOfTurbines.groupby(Field_CodeOfTurbine).agg(
  27. {Field_EnvTemp: 'median'})
  28. turbineEnvTempData = turbineEnvTempData.reset_index()
  29. mergeData = self.mergeData(self.turbineInfo, turbineEnvTempData)
  30. # 分机型
  31. turbrineInfos = self.common.getTurbineInfos(
  32. conf.dataContract.dataFilter.powerFarmID, turbineCodes, self.turbineInfo)
  33. groupedOfTurbineModel = turbrineInfos.groupby(Field_MillTypeCode)
  34. returnDatas = []
  35. for turbineModelCode, group in groupedOfTurbineModel:
  36. currTurbineCodes = group[Field_CodeOfTurbine].unique().tolist()
  37. currTurbineModeInfo = self.common.getTurbineModelByCode(
  38. turbineModelCode, self.turbineModelInfo)
  39. currDataFrameOfTurbines = dataFrameOfTurbines[dataFrameOfTurbines[Field_CodeOfTurbine].isin(
  40. currTurbineCodes)]
  41. returnData= self.draw(mergeData, outputAnalysisDir, conf,currTurbineModeInfo)
  42. returnDatas.append(returnData)
  43. returnResult = pd.concat(returnDatas, ignore_index=True)
  44. return returnResult
  45. # return self.draw(mergeData, outputAnalysisDir, conf)
  46. def mergeData(self, turbineInfos: pd.DataFrame, turbineEnvTempData):
  47. """
  48. 将每台机组的环境温度均值数据与机组信息,按机组合并
  49. 参数:
  50. turbineInfos (pandas.DataFrame): 机组信息数据
  51. turbineEnvTempData (pandas.DataFrame): 每台机组的环境温度均值数据
  52. 返回:
  53. pandas.DataFrame: 每台机组的环境温度均值数据与机组信息合并数据
  54. """
  55. """
  56. 合并类型how的选项包括:
  57. 'inner': 内连接,只保留两个DataFrame中都有的键的行。
  58. 'outer': 外连接,保留两个DataFrame中任一或两者都有的键的行。
  59. 'left': 左连接,保留左边DataFrame的所有键,以及右边DataFrame中匹配的键的行。
  60. 'right': 右连接,保留右边DataFrame的所有键,以及左边DataFrame中匹配的键的行。
  61. """
  62. # turbineInfos[fieldTurbineName]=turbineInfos[fieldTurbineName].astype(str).apply(confData.add_W_if_starts_with_digit)
  63. # turbineEnvTempData[Field_NameOfTurbine] = turbineEnvTempData[Field_NameOfTurbine].astype(
  64. # str)
  65. tempDataFrame = pd.merge(turbineInfos, turbineEnvTempData, on=[
  66. Field_CodeOfTurbine], how='inner')
  67. # 保留指定字段,例如 'Key' 和 'Value1'
  68. mergeDataFrame = tempDataFrame[[Field_CodeOfTurbine, Field_NameOfTurbine, Field_Latitude,Field_Longitude, Field_EnvTemp]]
  69. return mergeDataFrame
  70. # 定义查找给定半径内点的函数
  71. def find_points_within_radius(self, data, center, field_temperature_env, radius):
  72. points_within_radius = []
  73. for index, row in data.iterrows():
  74. distance = geodesic(
  75. (center[2], center[1]), (row[Field_Latitude], row[Field_Longitude])).meters
  76. if distance <= radius:
  77. points_within_radius.append(
  78. (row[Field_NameOfTurbine], row[field_temperature_env]))
  79. return points_within_radius
  80. fieldTemperatureDiff = "temperature_diff"
  81. # def draw(self, dataFrame: pd.DataFrame, outputAnalysisDir, conf: Contract, charset=charset_unify):
  82. def draw(self, dataFrame: pd.DataFrame, outputAnalysisDir, conf: Contract, turbineModelInfo: pd.Series):
  83. # 处理数据
  84. dataFrame['new'] = dataFrame.loc[:, [Field_NameOfTurbine,
  85. Field_Longitude, Field_Latitude, Field_EnvTemp]].apply(tuple, axis=1)
  86. coordinates = dataFrame['new'].tolist()
  87. # df = pd.DataFrame(coordinates, columns=[Field_NameOfTurbine, Field_Longitude, Field_Latitude, confData.field_env_temp])
  88. # 查找半径内的点
  89. points_within_radius = {coord: self.find_points_within_radius(
  90. dataFrame, coord, Field_EnvTemp, self.turbineModelInfo[Field_RotorDiameter].iloc[0]*10) for coord in coordinates}
  91. res = []
  92. for center, nearby_points in points_within_radius.items():
  93. current_temp = dataFrame[dataFrame[Field_NameOfTurbine]
  94. == center[0]][Field_EnvTemp].iloc[0]
  95. target_tuple = (center[0], current_temp)
  96. if target_tuple in nearby_points:
  97. nearby_points.remove(target_tuple)
  98. median_temp = np.median(
  99. [i[1] for i in nearby_points]) if nearby_points else current_temp
  100. res.append((center[0], nearby_points, median_temp, current_temp))
  101. res = pd.DataFrame(
  102. res, columns=[Field_NameOfTurbine, '周边机组', '周边机组温度', '当前机组温度'])
  103. res[self.fieldTemperatureDiff] = res['当前机组温度'] - res['周边机组温度']
  104. # 使用plotly进行数据可视化
  105. fig1 = make_subplots(rows=1, cols=1)
  106. # 温度差异条形图
  107. fig1.add_trace(
  108. go.Bar(x=res[Field_NameOfTurbine],
  109. y=res[self.fieldTemperatureDiff], marker_color='dodgerblue'),
  110. row=1, col=1
  111. )
  112. fig1.update_layout(
  113. title={'text': f'温度偏差-{turbineModelInfo[Field_MachineTypeCode]}', 'x': 0.5},
  114. xaxis_title='机组名称',
  115. yaxis_title='温度偏差',
  116. shapes=[
  117. {'type': 'line', 'x0': 0, 'x1': 1, 'xref': 'paper', 'y0': 5,
  118. 'y1': 5, 'line': {'color': 'red', 'dash': 'dot'}},
  119. {'type': 'line', 'x0': 0, 'x1': 1, 'xref': 'paper', 'y0': -
  120. 5, 'y1': -5, 'line': {'color': 'red', 'dash': 'dot'}}
  121. ],
  122. xaxis=dict(tickangle=-45) # 设置x轴刻度旋转角度为45度
  123. )
  124. result_rows = []
  125. # 保存图像
  126. pngFileName = '{}环境温差Bias.png'.format(
  127. self.powerFarmInfo[Field_PowerFarmName].iloc[0])
  128. pngFilePath = os.path.join(outputAnalysisDir, pngFileName)
  129. fig1.write_image(pngFilePath, scale=3)
  130. # 保存HTML
  131. htmlFileName = '{}环境温差Bias.html'.format(
  132. self.powerFarmInfo[Field_PowerFarmName].iloc[0])
  133. htmlFilePath = os.path.join(outputAnalysisDir, htmlFileName)
  134. fig1.write_html(htmlFilePath)
  135. result_rows.append({
  136. Field_Return_TypeAnalyst: self.typeAnalyst(),
  137. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  138. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  139. Field_CodeOfTurbine: Const_Output_Total,
  140. Field_Return_FilePath: pngFilePath,
  141. Field_Return_IsSaveDatabase: False
  142. })
  143. result_rows.append({
  144. Field_Return_TypeAnalyst: self.typeAnalyst(),
  145. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  146. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  147. Field_CodeOfTurbine: Const_Output_Total,
  148. Field_Return_FilePath: htmlFilePath,
  149. Field_Return_IsSaveDatabase: True
  150. })
  151. # 环境温度中位数条形图
  152. fig2 = make_subplots(rows=1, cols=1)
  153. fig2.add_trace(
  154. go.Bar(x=res[Field_NameOfTurbine],
  155. y=res['当前机组温度'], marker_color='dodgerblue'),
  156. row=1, col=1
  157. )
  158. fig2.update_layout(
  159. title={'text': f'平均温度-{turbineModelInfo[Field_MachineTypeCode]}', 'x': 0.5},
  160. xaxis_title='机组名称',
  161. yaxis_title=' 温度',
  162. xaxis=dict(tickangle=-45) # 为x轴也设置旋转角度
  163. )
  164. # 保存图像
  165. pngFileName = '{}环境温度中位数.png'.format(
  166. self.powerFarmInfo[Field_PowerFarmName].iloc[0])
  167. pngFilePath = os.path.join(outputAnalysisDir, pngFileName)
  168. fig2.write_image(pngFilePath, scale=3)
  169. # 保存HTML
  170. htmlFileName = '{}环境温度中位数.html'.format(
  171. self.powerFarmInfo[Field_PowerFarmName].iloc[0])
  172. htmlFilePath = os.path.join(outputAnalysisDir, htmlFileName)
  173. fig2.write_html(htmlFilePath)
  174. result_rows.append({
  175. Field_Return_TypeAnalyst: self.typeAnalyst(),
  176. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  177. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  178. Field_CodeOfTurbine: Const_Output_Total,
  179. Field_Return_FilePath: pngFilePath,
  180. Field_Return_IsSaveDatabase: False
  181. })
  182. result_rows.append({
  183. Field_Return_TypeAnalyst: self.typeAnalyst(),
  184. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  185. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  186. Field_CodeOfTurbine: Const_Output_Total,
  187. Field_Return_FilePath: htmlFilePath,
  188. Field_Return_IsSaveDatabase: True
  189. })
  190. result_df = pd.DataFrame(result_rows)
  191. return result_df
  192. """
  193. fig, ax = plt.subplots(figsize=(16,8),dpi=96)
  194. # 设置x轴刻度值旋转角度为45度
  195. plt.tick_params(axis='x', rotation=45)
  196. sns.barplot(x=Field_NameOfTurbine,y=self.fieldTemperatureDiff,data=res,ax=ax,color='dodgerblue')
  197. plt.axhline(y=5,ls=":",c="red")#添加水平直线
  198. plt.axhline(y=-5,ls=":",c="red")#添加水平直线
  199. ax.set_ylabel('temperature_difference')
  200. ax.set_title('temperature Bias')
  201. plt.savefig(outputAnalysisDir +'//'+ "{}环境温差Bias.png".format(confData.farm_name),bbox_inches='tight',dpi=120)
  202. fig2, ax2 = plt.subplots(figsize=(16,8),dpi=96)
  203. # 设置x轴刻度值旋转角度为45度
  204. plt.tick_params(axis='x', rotation=45)
  205. sns.barplot(x=Field_NameOfTurbine ,y='当前机组温度',data=res,ax=ax2,color='dodgerblue')
  206. ax2.set_ylabel('temperature')
  207. ax2.set_title('temperature median')
  208. plt.savefig(outputAnalysisDir +'//'+ "{}环境温度均值.png".format(confData.farm_name),bbox_inches='tight',dpi=120)
  209. """