temperatureLargeComponentsAnalyst.py 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564
  1. import os
  2. import pandas as pd
  3. import plotly.express as px
  4. import plotly.graph_objects as go
  5. from algorithmContract.confBusiness import *
  6. from algorithmContract.contract import Contract
  7. from behavior.analystWithGoodBadLimitPoint import AnalystWithGoodBadLimitPoint
  8. from plotly.subplots import make_subplots
  9. from utils.directoryUtil import DirectoryUtil as dir
  10. class Generator:
  11. def __init__(self) -> None:
  12. self.fieldTemperatorOfDEBearing = None
  13. self.fieldTemperatorOfNDEBearing = None
  14. TemperatureColumns = {Field_MainBearTemp: "主轴承温度",
  15. Field_GbMsBearTemp: "齿轮箱中速轴温度",
  16. Field_GbLsBearTemp: "齿轮箱低速轴温度",
  17. Field_GbHsBearTemp: "齿轮箱高速轴温度",
  18. Field_GeneratorDE: "发电机驱动端轴承温度",
  19. Field_GeneratorNDE: "发电机非驱动端轴承温度",
  20. Field_GenWiTemp1: "发电机绕组温度"}
  21. GeneratorTemperatureAnslysisColumns = [
  22. Field_GeneratorDE, Field_GeneratorNDE, Field_NacTemp]
  23. class TemperatureLargeComponentsAnalyst(AnalystWithGoodBadLimitPoint):
  24. """
  25. 风电机组大部件温升分析
  26. """
  27. def typeAnalyst(self):
  28. return "temperature_large_components"
  29. def getUseColumns(self, dataFrame: pd.DataFrame, temperatureColumns: list[dict]):
  30. # 获取非全为空的列名
  31. non_empty_cols = self.getNoneEmptyFields(dataFrame, temperatureColumns)
  32. useCols = []
  33. # useCols.append(Field_Time)
  34. useCols.append(Field_ActiverPower)
  35. if not self.common.isNone(Field_EnvTemp) and Field_EnvTemp in dataFrame.columns:
  36. useCols.append(Field_EnvTemp)
  37. if not self.common.isNone(Field_NacTemp) and Field_NacTemp in dataFrame.columns:
  38. useCols.append(Field_NacTemp)
  39. useCols.extend(non_empty_cols)
  40. return useCols
  41. def getNoneEmptyFields(self, dataFrame: pd.DataFrame, temperatureColumns: dict) -> list:
  42. # 使用set和列表推导式来获取在DataFrame中存在的字段
  43. existing_fields = [
  44. key for key in TemperatureColumns.keys() if key in dataFrame.columns
  45. ]
  46. # 检查指定列中非全为空的列
  47. non_empty_columns = dataFrame[existing_fields].apply(
  48. lambda x: x.notnull().any(), axis=0)
  49. # 获取非全为空的列名
  50. noneEmptyFields = non_empty_columns[non_empty_columns].index.tolist()
  51. return noneEmptyFields
  52. def dataReprocess(self, dataFrame: pd.DataFrame, non_empty_cols: list):
  53. # Initialize an empty df for aggregation
  54. agg_dict = {col: 'median' for col in non_empty_cols}
  55. # Group by 'power_floor' and aggregate
  56. grouped = dataFrame.groupby([Field_PowerFloor, Field_CodeOfTurbine, Field_NameOfTurbine]).agg(agg_dict).reset_index()
  57. # Sort by 'power_floor'
  58. grouped.sort_values(
  59. [Field_PowerFloor, Field_CodeOfTurbine, Field_NameOfTurbine], inplace=True)
  60. return grouped
  61. def turbinesAnalysis(self, outputAnalysisDir, conf: Contract, turbineCodes):
  62. select=[Field_DeviceCode, Field_Time, Field_WindSpeed, Field_ActiverPower]
  63. select=select+[Field_EnvTemp,Field_NacTemp]+list(TemperatureColumns.keys())
  64. dictionary = self.processTurbineData(turbineCodes, conf,select )
  65. dataFrameOfTurbines = self.userDataFrame(
  66. dictionary, conf.dataContract.configAnalysis, self)
  67. turbrineInfos = self.common.getTurbineInfos(
  68. conf.dataContract.dataFilter.powerFarmID, turbineCodes, self.turbineInfo)
  69. groupedOfTurbineModel = turbrineInfos.groupby(Field_MillTypeCode)
  70. returnDatas = []
  71. for turbineModelCode, group in groupedOfTurbineModel:
  72. currTurbineCodes = group[Field_CodeOfTurbine].unique().tolist()
  73. currTurbineModeInfo = self.common.getTurbineModelByCode(
  74. turbineModelCode, self.turbineModelInfo)
  75. currDataFrameOfTurbines = dataFrameOfTurbines[dataFrameOfTurbines[Field_CodeOfTurbine].isin(
  76. currTurbineCodes)]
  77. # 将 currTurbineInfos 转换为字典
  78. currTurbineInfos_dict = turbrineInfos.set_index(Field_CodeOfTurbine)[Field_NameOfTurbine].to_dict()
  79. # 使用 map 函数来填充 Field_NameOfTurbine 列
  80. currDataFrameOfTurbines[Field_NameOfTurbine] = currDataFrameOfTurbines[Field_CodeOfTurbine].map(currTurbineInfos_dict).fillna("")
  81. # 获取非全为空的列名
  82. non_empty_cols = self.getUseColumns(currDataFrameOfTurbines, TemperatureColumns)
  83. dataFrame = self.dataReprocess(currDataFrameOfTurbines, non_empty_cols)
  84. # non_empty_cols.remove(Field_Time)
  85. non_empty_cols.remove(Field_ActiverPower)
  86. non_empty_cols.remove(Field_EnvTemp)
  87. non_empty_cols.remove(Field_NacTemp)
  88. returnData= self.drawTemperatureGraph(dataFrame, outputAnalysisDir, conf, non_empty_cols,currTurbineModeInfo)
  89. returnDatas.append(returnData)
  90. returnResult = pd.concat(returnDatas, ignore_index=True)
  91. return returnResult
  92. def drawTemperatureGraph(self, dataFrameMerge: pd.DataFrame, outputAnalysisDir, conf: Contract, temperatureCols: list, turbineModelInfo: pd.Series):
  93. """
  94. 大部件温度传感器分析
  95. """
  96. y_name = '温度'
  97. outputDir = os.path.join(outputAnalysisDir, "GeneratorTemperature")
  98. dir.create_directory(outputDir)
  99. # 按设备名分组数据
  100. grouped = dataFrameMerge.groupby(Field_CodeOfTurbine)
  101. result_rows = []
  102. # Create output directories if they don't exist
  103. for column in temperatureCols:
  104. if not column in dataFrameMerge.columns:
  105. continue
  106. columnZH = TemperatureColumns.get(column)
  107. outputPath = os.path.join(outputAnalysisDir, column)
  108. dir.create_directory(outputPath)
  109. fig = go.Figure()
  110. # 获取 Plotly Express 中的颜色序列
  111. colors = px.colors.sequential.Turbo
  112. # 创建一个列表来存储各个风电机组的数据
  113. turbine_data_list = []
  114. # Add traces for each turbine
  115. for idx, (name, group) in enumerate(grouped):
  116. currTurbineInfo_group = self.common.getTurbineInfo(
  117. conf.dataContract.dataFilter.powerFarmID, name, self.turbineInfo)
  118. fig.add_trace(go.Scatter(
  119. x=group[Field_PowerFloor],
  120. y=group[column],
  121. mode='lines',
  122. name=currTurbineInfo_group[Field_NameOfTurbine],
  123. # 从 'Rainbow' 色组中循环选择颜色
  124. line=dict(color=colors[idx % len(colors)])
  125. ))
  126. # 提取数据
  127. turbine_data_total = {
  128. "engineName": currTurbineInfo_group[Field_NameOfTurbine],
  129. "engineCode": name,
  130. "xData": group[Field_PowerFloor].tolist(),
  131. "yData": group[column].tolist(),
  132. "color": colors[idx % len(colors)]
  133. }
  134. turbine_data_list.append(turbine_data_total)
  135. # Update layout and axes
  136. fig.update_layout(
  137. title={'text': f'{columnZH}分布-{turbineModelInfo[Field_MachineTypeCode]}', 'x': 0.5},
  138. xaxis_title='功率',
  139. yaxis_title=y_name,
  140. xaxis=dict(
  141. range=[
  142. self.axisLowerLimitActivePower,
  143. self.axisUpperLimitActivePower
  144. ],
  145. dtick=self.axisStepActivePower
  146. ),
  147. yaxis=dict(
  148. range=[0, 100],
  149. dtick=20
  150. ),
  151. # legend_title_text='Turbine',
  152. legend=dict(
  153. orientation="h", # Horizontal orientation
  154. xanchor="center", # Anchor the legend to the center
  155. x=0.5, # Position legend at the center of the x-axis
  156. y=-0.2, # Position legend below the x-axis
  157. # itemsizing='constant', # Keep the size of the legend entries constant
  158. # # Set the width of the legend items (in pixels)
  159. # itemwidth=50
  160. )
  161. )
  162. # Save the plot as a PNG/HTML file
  163. filePathOfImage = os.path.join(outputPath, f"{columnZH}-{turbineModelInfo[Field_MillTypeCode]}.png")
  164. fig.write_image(filePathOfImage, scale=3)
  165. # filePathOfHtml = os.path.join(outputPath, f"{columnZH}-{turbineModelInfo[Field_MillTypeCode]}.html")
  166. #fig.write_html(filePathOfHtml)
  167. engineTypeCode = turbineModelInfo.get(Field_MillTypeCode, "")
  168. if isinstance(engineTypeCode, pd.Series):
  169. engineTypeCode = engineTypeCode.iloc[0]
  170. engineTypeName = turbineModelInfo.get(Field_MachineTypeCode, "")
  171. if isinstance(engineTypeName, pd.Series):
  172. engineTypeName = engineTypeName.iloc[0]
  173. # 构建最终的JSON对象
  174. json_output = {
  175. "analysisTypeCode": "大部件温度传感器分析",
  176. "typecode": turbineModelInfo[Field_MillTypeCode],
  177. "engineCode": engineTypeCode,
  178. "engineTypeName": engineTypeName,
  179. "title": f'{columnZH}分布-{turbineModelInfo[Field_MachineTypeCode]}',
  180. "xaixs": "功率(kW)",
  181. "yaixs": y_name,
  182. "data": turbine_data_list
  183. }
  184. # 将JSON对象保存到文件
  185. output_json_path = os.path.join(outputPath,f"{turbineModelInfo[Field_MillTypeCode]}.json")
  186. with open(output_json_path, 'w', encoding='utf-8') as f:
  187. import json
  188. json.dump(json_output, f, ensure_ascii=False, indent=4)
  189. result_rows.append({
  190. Field_Return_TypeAnalyst: self.typeAnalyst(),
  191. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  192. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  193. Field_CodeOfTurbine: Const_Output_Total,
  194. Field_Return_FilePath: filePathOfImage,
  195. Field_Return_IsSaveDatabase: False
  196. })
  197. # result_rows.append({
  198. # Field_Return_TypeAnalyst: self.typeAnalyst(),
  199. # Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  200. # Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  201. # Field_CodeOfTurbine: Const_Output_Total,
  202. # Field_Return_FilePath: filePathOfHtml,
  203. # Field_Return_IsSaveDatabase: True
  204. # })
  205. # 如果需要返回DataFrame,可以包含文件路径
  206. result_rows.append({
  207. Field_Return_TypeAnalyst: self.typeAnalyst(),
  208. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  209. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  210. Field_CodeOfTurbine: 'total',
  211. Field_MillTypeCode: turbineModelInfo[Field_MillTypeCode],
  212. Field_Return_FilePath: output_json_path,
  213. Field_Return_IsSaveDatabase: True
  214. })
  215. # Create individual plots with specific turbine highlighted
  216. # for name, group in grouped:
  217. for idx, (name, group) in enumerate(grouped):
  218. single_fig = go.Figure()
  219. currTurbineInfo_each = self.common.getTurbineInfo(
  220. conf.dataContract.dataFilter.powerFarmID, name, self.turbineInfo)
  221. # 创建一个列表来存储各个风电机组的数据
  222. turbine_data_list_each = []
  223. # Add all other turbines in grey first
  224. # for other_name, other_group in grouped:
  225. for idx, (other_name, other_group) in enumerate(grouped):
  226. if other_name != name:
  227. tempTurbineInfo = self.common.getTurbineInfo(
  228. conf.dataContract.dataFilter.powerFarmID, other_name, self.turbineInfo)
  229. single_fig.add_trace(go.Scatter(
  230. x=other_group[Field_PowerFloor],
  231. y=other_group[column],
  232. mode='lines',
  233. name=tempTurbineInfo[Field_NameOfTurbine],
  234. line=dict(color='lightgrey', width=1),
  235. showlegend=False
  236. ))
  237. # 提取数据
  238. turbine_data_other_each = {
  239. "engineName": tempTurbineInfo[Field_NameOfTurbine],
  240. "engineCode": other_name,
  241. "xData": other_group[Field_PowerFloor].tolist(),
  242. "yData": other_group[column].tolist(),
  243. }
  244. turbine_data_list_each.append(turbine_data_other_each)
  245. # Add the turbine of interest in dark blue
  246. single_fig.add_trace(go.Scatter(
  247. x=group[Field_PowerFloor],
  248. y=group[column],
  249. mode='lines',
  250. # Make it slightly thicker for visibility
  251. line=dict(color='darkblue', width=2),
  252. showlegend=False # Disable legend for cleaner look
  253. ))
  254. turbine_data_curr = {
  255. "engineName": currTurbineInfo_each[Field_NameOfTurbine],
  256. "engineCode": currTurbineInfo_each[Field_CodeOfTurbine],
  257. "xData": group[Field_PowerFloor].tolist(),
  258. "yData": group[column].tolist(),
  259. }
  260. turbine_data_list_each.append(turbine_data_curr)
  261. # Update layout and axes for the individual plot
  262. single_fig.update_layout(
  263. # title={'text': f'Turbine: {name}', 'x': 0.5},
  264. title={'text': f'{columnZH}分布: {currTurbineInfo_each[Field_NameOfTurbine]}', 'x': 0.5},
  265. xaxis_title='功率',
  266. yaxis_title=y_name,
  267. xaxis=dict(
  268. range=[0, Field_RatedPower],
  269. dtick=200
  270. ),
  271. yaxis=dict(
  272. range=[0, 100],
  273. dtick=20
  274. )
  275. )
  276. engineTypeCode = turbineModelInfo.get(Field_MillTypeCode, "")
  277. if isinstance(engineTypeCode, pd.Series):
  278. engineTypeCode = engineTypeCode.iloc[0]
  279. engineTypeName = turbineModelInfo.get(Field_MachineTypeCode, "")
  280. if isinstance(engineTypeName, pd.Series):
  281. engineTypeName = engineTypeName.iloc[0]
  282. # 构建最终的JSON对象
  283. json_output = {
  284. "analysisTypeCode": "大部件温度传感器分析",
  285. "typecode": turbineModelInfo[Field_MillTypeCode],
  286. "engineCode": engineTypeCode,
  287. "engineTypeName": engineTypeName,
  288. "title": f'{columnZH}分布: {currTurbineInfo_each[Field_NameOfTurbine]}',
  289. "xaixs": "功率(kW)",
  290. "yaixs": y_name,
  291. "data": turbine_data_list_each
  292. }
  293. # 将JSON对象保存到文件
  294. output_json_path_each = os.path.join(outputPath, f"{currTurbineInfo_each[Field_NameOfTurbine]}.json")
  295. with open(output_json_path_each, 'w', encoding='utf-8') as f:
  296. import json
  297. json.dump(json_output, f, ensure_ascii=False, indent=4)
  298. filePathOfImage = os.path.join(
  299. outputPath, f"{currTurbineInfo_each[Field_NameOfTurbine]}.png")
  300. single_fig.write_image(filePathOfImage, scale=3)
  301. # filePathOfHtml = os.path.join(
  302. # outputPath, f"{name}.html")
  303. # single_fig.write_html(filePathOfHtml)
  304. result_rows.append({
  305. Field_Return_TypeAnalyst: self.typeAnalyst(),
  306. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  307. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  308. Field_CodeOfTurbine: group[Field_CodeOfTurbine].iloc[0],
  309. Field_Return_FilePath: filePathOfImage,
  310. Field_Return_IsSaveDatabase: False
  311. })
  312. # 如果需要返回DataFrame,可以包含文件路径
  313. result_rows.append({
  314. Field_Return_TypeAnalyst: self.typeAnalyst(),
  315. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  316. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  317. Field_CodeOfTurbine: group[Field_CodeOfTurbine].iloc[0],
  318. Field_Return_FilePath: output_json_path_each,
  319. Field_Return_IsSaveDatabase: True
  320. })
  321. # result_rows.append({
  322. # Field_Return_TypeAnalyst: self.typeAnalyst(),
  323. # Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  324. # Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  325. # Field_CodeOfTurbine: group[Field_CodeOfTurbine].iloc[0],
  326. # Field_Return_FilePath: filePathOfHtml,
  327. # Field_Return_IsSaveDatabase: True
  328. # })
  329. for idx, (name, group) in enumerate(grouped):
  330. # 绘制每台机组发电机的,驱动轴承温度、非驱动轴承温度、发电机轴承温度BIAS、发电机轴承温度和机舱温度BIAS 均与有功功率的折线图
  331. if not Field_GeneratorDE in group.columns or not Field_GeneratorNDE in group.columns or group[Field_GeneratorDE].isna().all() or group[Field_GeneratorNDE].isna().all():
  332. self.logger.warning(f"{name} 不具备发电机温度测点,或测点值全为空")
  333. continue
  334. refFieldTemperature = Field_EnvTemp if group[Field_NacTemp].isna(
  335. ).all() else Field_NacTemp
  336. result_rows1 = self.drawGeneratorTemperature(
  337. group, conf, Field_GeneratorDE, Field_GeneratorNDE, refFieldTemperature, Field_PowerFloor, name, outputDir)
  338. result_rows.extend(result_rows1)
  339. result_df = pd.DataFrame(result_rows)
  340. return result_df
  341. def drawGeneratorTemperature(self, dataFrame: pd.DataFrame, conf: Contract, yAxisDE, yAxisNDE, diffTemperature, xAxis, turbineCode, outputDir):
  342. tempTurbineInfo1 = self.common.getTurbineInfo(
  343. conf.dataContract.dataFilter.powerFarmID, turbineCode, self.turbineInfo)
  344. turbineName = tempTurbineInfo1[Field_NameOfTurbine]
  345. # 发电机驱动轴承温度 和 发电机非驱动轴承 温差
  346. fieldBIAS_DE_NDE = 'BIAS_DE-NDE'
  347. fieldBIAS_DE = 'BIAS_DE'
  348. fieldBIAS_NDE = 'BIAS_NDE'
  349. # Prepare Data
  350. dataFrame[fieldBIAS_DE] = dataFrame[yAxisDE] - \
  351. dataFrame[diffTemperature]
  352. dataFrame[fieldBIAS_NDE] = dataFrame[yAxisNDE] - \
  353. dataFrame[diffTemperature]
  354. dataFrame[fieldBIAS_DE_NDE] = dataFrame[yAxisDE] - dataFrame[yAxisNDE]
  355. # Create a plot with dual y-axes
  356. fig = make_subplots(specs=[[{"secondary_y": True}]])
  357. plot_data_list_each = []
  358. # Plot DE Bearing Temperature
  359. fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[yAxisDE], name='驱动端轴承温度', line=dict(
  360. color='blue')), secondary_y=False)
  361. plot_data_curr = {
  362. "Name": '驱动端轴承温度',
  363. "xData": dataFrame[xAxis].tolist(),
  364. "yData": dataFrame[yAxisDE].tolist(),
  365. "color": 'blue',
  366. }
  367. plot_data_list_each.append(plot_data_curr)
  368. # Plot NDE Bearing Temperature
  369. fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[yAxisNDE], name='非驱动端轴承温度', line=dict(
  370. color='green')), secondary_y=False)
  371. plot_data_curr = {
  372. "Name": '非驱动端轴承温度',
  373. "xData": dataFrame[xAxis].tolist(),
  374. "yData": dataFrame[yAxisNDE].tolist(),
  375. "color": 'green',
  376. }
  377. plot_data_list_each.append(plot_data_curr)
  378. # Plot Temperature Differences
  379. fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[fieldBIAS_DE], name='驱动端轴承温度与机舱温度偏差', line=dict(
  380. color='blue', dash='dot')), secondary_y=False)
  381. plot_data_curr = {
  382. "Name": '驱动端轴承温度与机舱温度偏差',
  383. "xData": dataFrame[xAxis].tolist(),
  384. "yData": dataFrame[fieldBIAS_DE].tolist(),
  385. "color": 'blue',
  386. }
  387. plot_data_list_each.append(plot_data_curr)
  388. fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[fieldBIAS_NDE], name='非驱动端轴承温度与机舱温度偏差', line=dict(
  389. color='green', dash='dot')), secondary_y=False)
  390. plot_data_curr = {
  391. "Name": '非驱动端轴承温度与机舱温度偏差',
  392. "xData": dataFrame[xAxis].tolist(),
  393. "yData": dataFrame[fieldBIAS_NDE].tolist(),
  394. "color": 'green',
  395. }
  396. plot_data_list_each.append(plot_data_curr)
  397. fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[fieldBIAS_DE_NDE],
  398. name='驱动端轴承与非驱动端轴承温度偏差', line=dict(color='black', dash='dash')), secondary_y=False)
  399. plot_data_curr = {
  400. "Name": '驱动端轴承与非驱动端轴承温度偏差',
  401. "xData": dataFrame[xAxis].tolist(),
  402. "yData": dataFrame[fieldBIAS_DE_NDE].tolist(),
  403. "color": 'black',
  404. }
  405. plot_data_list_each.append(plot_data_curr)
  406. # Plot Nacelle Temperature
  407. fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[diffTemperature],
  408. name='机舱温度', line=dict(color='orange')), secondary_y=False)
  409. plot_data_curr = {
  410. "Name": '机舱温度',
  411. "xData": dataFrame[xAxis].tolist(),
  412. "yData": dataFrame[diffTemperature].tolist(),
  413. "color": 'orange',
  414. }
  415. plot_data_list_each.append(plot_data_curr)
  416. # Add horizontal reference lines
  417. fig.add_hline(y=5, line_dash="dot", line_color="#FFDB58")
  418. fig.add_hline(y=-5, line_dash="dot", line_color="#FFDB58")
  419. fig.add_hline(y=15, line_dash="dot", line_color="red")
  420. fig.add_hline(y=-15, line_dash="dot", line_color="red")
  421. # Update layout
  422. fig.update_layout(
  423. title={'text': f'发电机温度偏差: {turbineName}'},
  424. xaxis_title="功率",
  425. yaxis_title='轴承温度 & 偏差',
  426. legend_title='温度 & 偏差',
  427. legend=dict(x=1.1, y=0.5, bgcolor='rgba(255, 255, 255, 0.5)'),
  428. margin=dict(r=200) # Adjust margin to fit legend
  429. )
  430. fig.update_yaxes(range=[-20, 100], secondary_y=False)
  431. # 构建最终的JSON对象
  432. json_output = {
  433. "analysisTypeCode": "发电机温度传感器分析",
  434. "turbineName": tempTurbineInfo1[Field_NameOfTurbine],
  435. "turbineCode": tempTurbineInfo1[Field_CodeOfTurbine],
  436. "title": f'发电机温度偏差: {turbineName}',
  437. "xaixs": "功率(kW)",
  438. "yaixs": '轴承温度 & 偏差',
  439. "data": plot_data_list_each
  440. }
  441. # 将JSON对象保存到文件
  442. output_json_path_each = os.path.join(outputDir, f"{turbineName}.json")
  443. with open(output_json_path_each, 'w', encoding='utf-8') as f:
  444. import json
  445. json.dump(json_output, f, ensure_ascii=False, indent=4)
  446. # Save the plot as a PNG/HTML file
  447. filePathOfImage = os.path.join(outputDir, f"{turbineName}.png")
  448. fig.write_image(filePathOfImage, width=800, height=600, scale=3)
  449. # filePathOfHtml = os.path.join(outputDir, f"{turbineName}.html")
  450. # fig.write_html(filePathOfHtml)
  451. result_rows1 = []
  452. result_rows1.append({
  453. Field_Return_TypeAnalyst: self.typeAnalyst(),
  454. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  455. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  456. Field_CodeOfTurbine: dataFrame[Field_CodeOfTurbine].iloc[0],
  457. Field_Return_FilePath: filePathOfImage,
  458. Field_Return_IsSaveDatabase: False
  459. })
  460. # 如果需要返回DataFrame,可以包含文件路径
  461. result_rows1.append({
  462. Field_Return_TypeAnalyst: self.typeAnalyst(),
  463. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  464. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  465. Field_CodeOfTurbine: dataFrame[Field_CodeOfTurbine].iloc[0],
  466. Field_Return_FilePath: output_json_path_each,
  467. Field_Return_IsSaveDatabase: True
  468. })
  469. # result_rows1.append({
  470. # Field_Return_TypeAnalyst: self.typeAnalyst(),
  471. # Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  472. # Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  473. # Field_CodeOfTurbine: dataFrame[Field_CodeOfTurbine].iloc[0],
  474. # Field_Return_FilePath: filePathOfHtml,
  475. # Field_Return_IsSaveDatabase: True
  476. # })
  477. return result_rows1