123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564 |
- import os
- import pandas as pd
- import plotly.express as px
- import plotly.graph_objects as go
- from algorithmContract.confBusiness import *
- from algorithmContract.contract import Contract
- from behavior.analystWithGoodBadLimitPoint import AnalystWithGoodBadLimitPoint
- from plotly.subplots import make_subplots
- from utils.directoryUtil import DirectoryUtil as dir
- class Generator:
- def __init__(self) -> None:
- self.fieldTemperatorOfDEBearing = None
- self.fieldTemperatorOfNDEBearing = None
- TemperatureColumns = {Field_MainBearTemp: "主轴承温度",
- Field_GbMsBearTemp: "齿轮箱中速轴温度",
- Field_GbLsBearTemp: "齿轮箱低速轴温度",
- Field_GbHsBearTemp: "齿轮箱高速轴温度",
- Field_GeneratorDE: "发电机驱动端轴承温度",
- Field_GeneratorNDE: "发电机非驱动端轴承温度",
- Field_GenWiTemp1: "发电机绕组温度"}
- GeneratorTemperatureAnslysisColumns = [
- Field_GeneratorDE, Field_GeneratorNDE, Field_NacTemp]
- class TemperatureLargeComponentsAnalyst(AnalystWithGoodBadLimitPoint):
- """
- 风电机组大部件温升分析
- """
- def typeAnalyst(self):
- return "temperature_large_components"
- def getUseColumns(self, dataFrame: pd.DataFrame, temperatureColumns: list[dict]):
- # 获取非全为空的列名
- non_empty_cols = self.getNoneEmptyFields(dataFrame, temperatureColumns)
- useCols = []
- # useCols.append(Field_Time)
- useCols.append(Field_ActiverPower)
- if not self.common.isNone(Field_EnvTemp) and Field_EnvTemp in dataFrame.columns:
- useCols.append(Field_EnvTemp)
- if not self.common.isNone(Field_NacTemp) and Field_NacTemp in dataFrame.columns:
- useCols.append(Field_NacTemp)
- useCols.extend(non_empty_cols)
- return useCols
- def getNoneEmptyFields(self, dataFrame: pd.DataFrame, temperatureColumns: dict) -> list:
- # 使用set和列表推导式来获取在DataFrame中存在的字段
- existing_fields = [
- key for key in TemperatureColumns.keys() if key in dataFrame.columns
- ]
- # 检查指定列中非全为空的列
- non_empty_columns = dataFrame[existing_fields].apply(
- lambda x: x.notnull().any(), axis=0)
- # 获取非全为空的列名
- noneEmptyFields = non_empty_columns[non_empty_columns].index.tolist()
- return noneEmptyFields
- def dataReprocess(self, dataFrame: pd.DataFrame, non_empty_cols: list):
- # Initialize an empty df for aggregation
- agg_dict = {col: 'median' for col in non_empty_cols}
- # Group by 'power_floor' and aggregate
- grouped = dataFrame.groupby([Field_PowerFloor, Field_CodeOfTurbine, Field_NameOfTurbine]).agg(agg_dict).reset_index()
- # Sort by 'power_floor'
- grouped.sort_values(
- [Field_PowerFloor, Field_CodeOfTurbine, Field_NameOfTurbine], inplace=True)
- return grouped
- def turbinesAnalysis(self, outputAnalysisDir, conf: Contract, turbineCodes):
- select=[Field_DeviceCode, Field_Time, Field_WindSpeed, Field_ActiverPower]
- select=select+[Field_EnvTemp,Field_NacTemp]+list(TemperatureColumns.keys())
- dictionary = self.processTurbineData(turbineCodes, conf,select )
- dataFrameOfTurbines = self.userDataFrame(
- dictionary, conf.dataContract.configAnalysis, self)
- turbrineInfos = self.common.getTurbineInfos(
- conf.dataContract.dataFilter.powerFarmID, turbineCodes, self.turbineInfo)
- groupedOfTurbineModel = turbrineInfos.groupby(Field_MillTypeCode)
- returnDatas = []
- for turbineModelCode, group in groupedOfTurbineModel:
- currTurbineCodes = group[Field_CodeOfTurbine].unique().tolist()
- currTurbineModeInfo = self.common.getTurbineModelByCode(
- turbineModelCode, self.turbineModelInfo)
- currDataFrameOfTurbines = dataFrameOfTurbines[dataFrameOfTurbines[Field_CodeOfTurbine].isin(
- currTurbineCodes)]
- # 将 currTurbineInfos 转换为字典
- currTurbineInfos_dict = turbrineInfos.set_index(Field_CodeOfTurbine)[Field_NameOfTurbine].to_dict()
- # 使用 map 函数来填充 Field_NameOfTurbine 列
- currDataFrameOfTurbines[Field_NameOfTurbine] = currDataFrameOfTurbines[Field_CodeOfTurbine].map(currTurbineInfos_dict).fillna("")
- # 获取非全为空的列名
- non_empty_cols = self.getUseColumns(currDataFrameOfTurbines, TemperatureColumns)
- dataFrame = self.dataReprocess(currDataFrameOfTurbines, non_empty_cols)
- # non_empty_cols.remove(Field_Time)
- non_empty_cols.remove(Field_ActiverPower)
- non_empty_cols.remove(Field_EnvTemp)
- non_empty_cols.remove(Field_NacTemp)
- returnData= self.drawTemperatureGraph(dataFrame, outputAnalysisDir, conf, non_empty_cols,currTurbineModeInfo)
- returnDatas.append(returnData)
- returnResult = pd.concat(returnDatas, ignore_index=True)
- return returnResult
- def drawTemperatureGraph(self, dataFrameMerge: pd.DataFrame, outputAnalysisDir, conf: Contract, temperatureCols: list, turbineModelInfo: pd.Series):
- """
- 大部件温度传感器分析
- """
- y_name = '温度'
- outputDir = os.path.join(outputAnalysisDir, "GeneratorTemperature")
- dir.create_directory(outputDir)
- # 按设备名分组数据
- grouped = dataFrameMerge.groupby(Field_CodeOfTurbine)
- result_rows = []
- # Create output directories if they don't exist
- for column in temperatureCols:
- if not column in dataFrameMerge.columns:
- continue
- columnZH = TemperatureColumns.get(column)
- outputPath = os.path.join(outputAnalysisDir, column)
- dir.create_directory(outputPath)
- fig = go.Figure()
- # 获取 Plotly Express 中的颜色序列
- colors = px.colors.sequential.Turbo
- # 创建一个列表来存储各个风电机组的数据
- turbine_data_list = []
- # Add traces for each turbine
- for idx, (name, group) in enumerate(grouped):
- currTurbineInfo_group = self.common.getTurbineInfo(
- conf.dataContract.dataFilter.powerFarmID, name, self.turbineInfo)
- fig.add_trace(go.Scatter(
- x=group[Field_PowerFloor],
- y=group[column],
- mode='lines',
- name=currTurbineInfo_group[Field_NameOfTurbine],
- # 从 'Rainbow' 色组中循环选择颜色
- line=dict(color=colors[idx % len(colors)])
- ))
- # 提取数据
- turbine_data_total = {
- "engineName": currTurbineInfo_group[Field_NameOfTurbine],
- "engineCode": name,
- "xData": group[Field_PowerFloor].tolist(),
- "yData": group[column].tolist(),
- "color": colors[idx % len(colors)]
- }
- turbine_data_list.append(turbine_data_total)
- # Update layout and axes
- fig.update_layout(
- title={'text': f'{columnZH}分布-{turbineModelInfo[Field_MachineTypeCode]}', 'x': 0.5},
- xaxis_title='功率',
- yaxis_title=y_name,
- xaxis=dict(
- range=[
- self.axisLowerLimitActivePower,
- self.axisUpperLimitActivePower
- ],
- dtick=self.axisStepActivePower
- ),
- yaxis=dict(
- range=[0, 100],
- dtick=20
- ),
- # legend_title_text='Turbine',
- legend=dict(
- orientation="h", # Horizontal orientation
- xanchor="center", # Anchor the legend to the center
- x=0.5, # Position legend at the center of the x-axis
- y=-0.2, # Position legend below the x-axis
- # itemsizing='constant', # Keep the size of the legend entries constant
- # # Set the width of the legend items (in pixels)
- # itemwidth=50
- )
- )
- # Save the plot as a PNG/HTML file
- filePathOfImage = os.path.join(outputPath, f"{columnZH}-{turbineModelInfo[Field_MillTypeCode]}.png")
- fig.write_image(filePathOfImage, scale=3)
- # filePathOfHtml = os.path.join(outputPath, f"{columnZH}-{turbineModelInfo[Field_MillTypeCode]}.html")
- #fig.write_html(filePathOfHtml)
- engineTypeCode = turbineModelInfo.get(Field_MillTypeCode, "")
- if isinstance(engineTypeCode, pd.Series):
- engineTypeCode = engineTypeCode.iloc[0]
- engineTypeName = turbineModelInfo.get(Field_MachineTypeCode, "")
- if isinstance(engineTypeName, pd.Series):
- engineTypeName = engineTypeName.iloc[0]
- # 构建最终的JSON对象
- json_output = {
- "analysisTypeCode": "大部件温度传感器分析",
- "typecode": turbineModelInfo[Field_MillTypeCode],
- "engineCode": engineTypeCode,
- "engineTypeName": engineTypeName,
- "title": f'{columnZH}分布-{turbineModelInfo[Field_MachineTypeCode]}',
- "xaixs": "功率(kW)",
- "yaixs": y_name,
- "data": turbine_data_list
- }
- # 将JSON对象保存到文件
- output_json_path = os.path.join(outputPath,f"{turbineModelInfo[Field_MillTypeCode]}.json")
- with open(output_json_path, 'w', encoding='utf-8') as f:
- import json
- json.dump(json_output, f, ensure_ascii=False, indent=4)
- result_rows.append({
- Field_Return_TypeAnalyst: self.typeAnalyst(),
- Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
- Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
- Field_CodeOfTurbine: Const_Output_Total,
- Field_Return_FilePath: filePathOfImage,
- Field_Return_IsSaveDatabase: False
- })
- # result_rows.append({
- # Field_Return_TypeAnalyst: self.typeAnalyst(),
- # Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
- # Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
- # Field_CodeOfTurbine: Const_Output_Total,
- # Field_Return_FilePath: filePathOfHtml,
- # Field_Return_IsSaveDatabase: True
- # })
- # 如果需要返回DataFrame,可以包含文件路径
- result_rows.append({
- Field_Return_TypeAnalyst: self.typeAnalyst(),
- Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
- Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
- Field_CodeOfTurbine: 'total',
- Field_MillTypeCode: turbineModelInfo[Field_MillTypeCode],
- Field_Return_FilePath: output_json_path,
- Field_Return_IsSaveDatabase: True
- })
- # Create individual plots with specific turbine highlighted
- # for name, group in grouped:
- for idx, (name, group) in enumerate(grouped):
- single_fig = go.Figure()
- currTurbineInfo_each = self.common.getTurbineInfo(
- conf.dataContract.dataFilter.powerFarmID, name, self.turbineInfo)
- # 创建一个列表来存储各个风电机组的数据
- turbine_data_list_each = []
- # Add all other turbines in grey first
- # for other_name, other_group in grouped:
- for idx, (other_name, other_group) in enumerate(grouped):
- if other_name != name:
- tempTurbineInfo = self.common.getTurbineInfo(
- conf.dataContract.dataFilter.powerFarmID, other_name, self.turbineInfo)
- single_fig.add_trace(go.Scatter(
- x=other_group[Field_PowerFloor],
- y=other_group[column],
- mode='lines',
- name=tempTurbineInfo[Field_NameOfTurbine],
- line=dict(color='lightgrey', width=1),
- showlegend=False
- ))
- # 提取数据
- turbine_data_other_each = {
- "engineName": tempTurbineInfo[Field_NameOfTurbine],
- "engineCode": other_name,
- "xData": other_group[Field_PowerFloor].tolist(),
- "yData": other_group[column].tolist(),
- }
- turbine_data_list_each.append(turbine_data_other_each)
- # Add the turbine of interest in dark blue
- single_fig.add_trace(go.Scatter(
- x=group[Field_PowerFloor],
- y=group[column],
- mode='lines',
- # Make it slightly thicker for visibility
- line=dict(color='darkblue', width=2),
- showlegend=False # Disable legend for cleaner look
- ))
- turbine_data_curr = {
- "engineName": currTurbineInfo_each[Field_NameOfTurbine],
- "engineCode": currTurbineInfo_each[Field_CodeOfTurbine],
- "xData": group[Field_PowerFloor].tolist(),
- "yData": group[column].tolist(),
- }
- turbine_data_list_each.append(turbine_data_curr)
- # Update layout and axes for the individual plot
- single_fig.update_layout(
- # title={'text': f'Turbine: {name}', 'x': 0.5},
- title={'text': f'{columnZH}分布: {currTurbineInfo_each[Field_NameOfTurbine]}', 'x': 0.5},
- xaxis_title='功率',
- yaxis_title=y_name,
- xaxis=dict(
- range=[0, Field_RatedPower],
- dtick=200
- ),
- yaxis=dict(
- range=[0, 100],
- dtick=20
- )
- )
- engineTypeCode = turbineModelInfo.get(Field_MillTypeCode, "")
- if isinstance(engineTypeCode, pd.Series):
- engineTypeCode = engineTypeCode.iloc[0]
- engineTypeName = turbineModelInfo.get(Field_MachineTypeCode, "")
- if isinstance(engineTypeName, pd.Series):
- engineTypeName = engineTypeName.iloc[0]
- # 构建最终的JSON对象
- json_output = {
- "analysisTypeCode": "大部件温度传感器分析",
- "typecode": turbineModelInfo[Field_MillTypeCode],
- "engineCode": engineTypeCode,
- "engineTypeName": engineTypeName,
- "title": f'{columnZH}分布: {currTurbineInfo_each[Field_NameOfTurbine]}',
- "xaixs": "功率(kW)",
- "yaixs": y_name,
- "data": turbine_data_list_each
- }
- # 将JSON对象保存到文件
- output_json_path_each = os.path.join(outputPath, f"{currTurbineInfo_each[Field_NameOfTurbine]}.json")
- with open(output_json_path_each, 'w', encoding='utf-8') as f:
- import json
- json.dump(json_output, f, ensure_ascii=False, indent=4)
- filePathOfImage = os.path.join(
- outputPath, f"{currTurbineInfo_each[Field_NameOfTurbine]}.png")
- single_fig.write_image(filePathOfImage, scale=3)
- # filePathOfHtml = os.path.join(
- # outputPath, f"{name}.html")
- # single_fig.write_html(filePathOfHtml)
- result_rows.append({
- Field_Return_TypeAnalyst: self.typeAnalyst(),
- Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
- Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
- Field_CodeOfTurbine: group[Field_CodeOfTurbine].iloc[0],
- Field_Return_FilePath: filePathOfImage,
- Field_Return_IsSaveDatabase: False
- })
- # 如果需要返回DataFrame,可以包含文件路径
- result_rows.append({
- Field_Return_TypeAnalyst: self.typeAnalyst(),
- Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
- Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
- Field_CodeOfTurbine: group[Field_CodeOfTurbine].iloc[0],
- Field_Return_FilePath: output_json_path_each,
- Field_Return_IsSaveDatabase: True
- })
- # result_rows.append({
- # Field_Return_TypeAnalyst: self.typeAnalyst(),
- # Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
- # Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
- # Field_CodeOfTurbine: group[Field_CodeOfTurbine].iloc[0],
- # Field_Return_FilePath: filePathOfHtml,
- # Field_Return_IsSaveDatabase: True
- # })
- for idx, (name, group) in enumerate(grouped):
- # 绘制每台机组发电机的,驱动轴承温度、非驱动轴承温度、发电机轴承温度BIAS、发电机轴承温度和机舱温度BIAS 均与有功功率的折线图
- if not Field_GeneratorDE in group.columns or not Field_GeneratorNDE in group.columns or group[Field_GeneratorDE].isna().all() or group[Field_GeneratorNDE].isna().all():
- self.logger.warning(f"{name} 不具备发电机温度测点,或测点值全为空")
- continue
- refFieldTemperature = Field_EnvTemp if group[Field_NacTemp].isna(
- ).all() else Field_NacTemp
- result_rows1 = self.drawGeneratorTemperature(
- group, conf, Field_GeneratorDE, Field_GeneratorNDE, refFieldTemperature, Field_PowerFloor, name, outputDir)
- result_rows.extend(result_rows1)
- result_df = pd.DataFrame(result_rows)
- return result_df
- def drawGeneratorTemperature(self, dataFrame: pd.DataFrame, conf: Contract, yAxisDE, yAxisNDE, diffTemperature, xAxis, turbineCode, outputDir):
- tempTurbineInfo1 = self.common.getTurbineInfo(
- conf.dataContract.dataFilter.powerFarmID, turbineCode, self.turbineInfo)
- turbineName = tempTurbineInfo1[Field_NameOfTurbine]
- # 发电机驱动轴承温度 和 发电机非驱动轴承 温差
- fieldBIAS_DE_NDE = 'BIAS_DE-NDE'
- fieldBIAS_DE = 'BIAS_DE'
- fieldBIAS_NDE = 'BIAS_NDE'
- # Prepare Data
- dataFrame[fieldBIAS_DE] = dataFrame[yAxisDE] - \
- dataFrame[diffTemperature]
- dataFrame[fieldBIAS_NDE] = dataFrame[yAxisNDE] - \
- dataFrame[diffTemperature]
- dataFrame[fieldBIAS_DE_NDE] = dataFrame[yAxisDE] - dataFrame[yAxisNDE]
- # Create a plot with dual y-axes
- fig = make_subplots(specs=[[{"secondary_y": True}]])
- plot_data_list_each = []
- # Plot DE Bearing Temperature
- fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[yAxisDE], name='驱动端轴承温度', line=dict(
- color='blue')), secondary_y=False)
- plot_data_curr = {
- "Name": '驱动端轴承温度',
- "xData": dataFrame[xAxis].tolist(),
- "yData": dataFrame[yAxisDE].tolist(),
- "color": 'blue',
- }
- plot_data_list_each.append(plot_data_curr)
- # Plot NDE Bearing Temperature
- fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[yAxisNDE], name='非驱动端轴承温度', line=dict(
- color='green')), secondary_y=False)
- plot_data_curr = {
- "Name": '非驱动端轴承温度',
- "xData": dataFrame[xAxis].tolist(),
- "yData": dataFrame[yAxisNDE].tolist(),
- "color": 'green',
- }
- plot_data_list_each.append(plot_data_curr)
- # Plot Temperature Differences
- fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[fieldBIAS_DE], name='驱动端轴承温度与机舱温度偏差', line=dict(
- color='blue', dash='dot')), secondary_y=False)
- plot_data_curr = {
- "Name": '驱动端轴承温度与机舱温度偏差',
- "xData": dataFrame[xAxis].tolist(),
- "yData": dataFrame[fieldBIAS_DE].tolist(),
- "color": 'blue',
- }
- plot_data_list_each.append(plot_data_curr)
- fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[fieldBIAS_NDE], name='非驱动端轴承温度与机舱温度偏差', line=dict(
- color='green', dash='dot')), secondary_y=False)
- plot_data_curr = {
- "Name": '非驱动端轴承温度与机舱温度偏差',
- "xData": dataFrame[xAxis].tolist(),
- "yData": dataFrame[fieldBIAS_NDE].tolist(),
- "color": 'green',
- }
- plot_data_list_each.append(plot_data_curr)
- fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[fieldBIAS_DE_NDE],
- name='驱动端轴承与非驱动端轴承温度偏差', line=dict(color='black', dash='dash')), secondary_y=False)
- plot_data_curr = {
- "Name": '驱动端轴承与非驱动端轴承温度偏差',
- "xData": dataFrame[xAxis].tolist(),
- "yData": dataFrame[fieldBIAS_DE_NDE].tolist(),
- "color": 'black',
- }
- plot_data_list_each.append(plot_data_curr)
- # Plot Nacelle Temperature
- fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[diffTemperature],
- name='机舱温度', line=dict(color='orange')), secondary_y=False)
- plot_data_curr = {
- "Name": '机舱温度',
- "xData": dataFrame[xAxis].tolist(),
- "yData": dataFrame[diffTemperature].tolist(),
- "color": 'orange',
- }
- plot_data_list_each.append(plot_data_curr)
- # Add horizontal reference lines
- fig.add_hline(y=5, line_dash="dot", line_color="#FFDB58")
- fig.add_hline(y=-5, line_dash="dot", line_color="#FFDB58")
- fig.add_hline(y=15, line_dash="dot", line_color="red")
- fig.add_hline(y=-15, line_dash="dot", line_color="red")
- # Update layout
- fig.update_layout(
- title={'text': f'发电机温度偏差: {turbineName}'},
- xaxis_title="功率",
- yaxis_title='轴承温度 & 偏差',
- legend_title='温度 & 偏差',
- legend=dict(x=1.1, y=0.5, bgcolor='rgba(255, 255, 255, 0.5)'),
- margin=dict(r=200) # Adjust margin to fit legend
- )
- fig.update_yaxes(range=[-20, 100], secondary_y=False)
- # 构建最终的JSON对象
- json_output = {
- "analysisTypeCode": "发电机温度传感器分析",
- "turbineName": tempTurbineInfo1[Field_NameOfTurbine],
- "turbineCode": tempTurbineInfo1[Field_CodeOfTurbine],
- "title": f'发电机温度偏差: {turbineName}',
- "xaixs": "功率(kW)",
- "yaixs": '轴承温度 & 偏差',
- "data": plot_data_list_each
- }
- # 将JSON对象保存到文件
- output_json_path_each = os.path.join(outputDir, f"{turbineName}.json")
- with open(output_json_path_each, 'w', encoding='utf-8') as f:
- import json
- json.dump(json_output, f, ensure_ascii=False, indent=4)
- # Save the plot as a PNG/HTML file
- filePathOfImage = os.path.join(outputDir, f"{turbineName}.png")
- fig.write_image(filePathOfImage, width=800, height=600, scale=3)
- # filePathOfHtml = os.path.join(outputDir, f"{turbineName}.html")
- # fig.write_html(filePathOfHtml)
- result_rows1 = []
- result_rows1.append({
- Field_Return_TypeAnalyst: self.typeAnalyst(),
- Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
- Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
- Field_CodeOfTurbine: dataFrame[Field_CodeOfTurbine].iloc[0],
- Field_Return_FilePath: filePathOfImage,
- Field_Return_IsSaveDatabase: False
- })
- # 如果需要返回DataFrame,可以包含文件路径
- result_rows1.append({
- Field_Return_TypeAnalyst: self.typeAnalyst(),
- Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
- Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
- Field_CodeOfTurbine: dataFrame[Field_CodeOfTurbine].iloc[0],
- Field_Return_FilePath: output_json_path_each,
- Field_Return_IsSaveDatabase: True
- })
- # result_rows1.append({
- # Field_Return_TypeAnalyst: self.typeAnalyst(),
- # Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
- # Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
- # Field_CodeOfTurbine: dataFrame[Field_CodeOfTurbine].iloc[0],
- # Field_Return_FilePath: filePathOfHtml,
- # Field_Return_IsSaveDatabase: True
- # })
- return result_rows1
|