tsrAnalyst.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263
  1. import os
  2. import pandas as pd
  3. import math
  4. import numpy as np
  5. from plotly.subplots import make_subplots
  6. import plotly.express as px
  7. import pandas as pd
  8. import plotly.graph_objects as go
  9. import seaborn as sns
  10. from matplotlib.ticker import MultipleLocator
  11. from behavior.analystWithGoodPoint import AnalystWithGoodPoint
  12. from utils.directoryUtil import DirectoryUtil as dir
  13. from algorithmContract.confBusiness import *
  14. from algorithmContract.contract import Contract
  15. class TSRAnalyst(AnalystWithGoodPoint):
  16. """
  17. 风电机组叶尖速比分析
  18. """
  19. def typeAnalyst(self):
  20. return "tsr"
  21. def turbinesAnalysis(self, outputAnalysisDir, conf: Contract, turbineCodes):
  22. dictionary = self.processTurbineData(turbineCodes, conf, [
  23. Field_DeviceCode, Field_Time, Field_WindSpeed, Field_ActiverPower,Field_RotorSpeed,Field_GeneratorSpeed])
  24. dataFrameOfTurbines = self.userDataFrame(
  25. dictionary, conf.dataContract.configAnalysis, self)
  26. # 检查所需列是否存在
  27. required_columns = {Field_WindSpeed, Field_RotorSpeed,Field_PowerFloor,Field_GeneratorSpeed}
  28. if not required_columns.issubset(dataFrameOfTurbines.columns):
  29. raise ValueError(f"DataFrame缺少必要的列。需要的列有: {required_columns}")
  30. turbrineInfos = self.common.getTurbineInfos(
  31. conf.dataContract.dataFilter.powerFarmID, turbineCodes, self.turbineInfo)
  32. groupedOfTurbineModel = turbrineInfos.groupby(Field_MillTypeCode)
  33. returnDatas = []
  34. for turbineModelCode, group in groupedOfTurbineModel:
  35. currTurbineCodes = group[Field_CodeOfTurbine].unique().tolist()
  36. currTurbineModeInfo = self.common.getTurbineModelByCode(
  37. turbineModelCode, self.turbineModelInfo)
  38. currDataFrameOfTurbines = dataFrameOfTurbines[dataFrameOfTurbines[Field_CodeOfTurbine].isin(
  39. currTurbineCodes)]
  40. #创建一个与currDataFrameOfTurbines相同的dataFrameMerge
  41. dataFrameMerge=currDataFrameOfTurbines.copy()
  42. # return self.plot_tsr_distribution(self.tsr(dataFrameMerge), outputAnalysisDir, conf)
  43. dataFrameMerge[Field_PowerFarmName] = self.currPowerFarmInfo.loc[Field_PowerFarmName]
  44. # Calculate 'power_floor'
  45. dataFrameMerge[Field_PowerFloor] = (
  46. dataFrameMerge[Field_ActiverPower] / 10).astype(int) * 10
  47. # Ensure the necessary columns are of float type
  48. dataFrameMerge[Field_WindSpeed] = dataFrameMerge[Field_WindSpeed].astype(float)
  49. dataFrameMerge[Field_RotorSpeed] = dataFrameMerge[Field_RotorSpeed].astype(float)
  50. dataFrameMerge[Field_GeneratorSpeed] = dataFrameMerge[Field_GeneratorSpeed].astype(float)
  51. # Group by 'power_floor' and calculate median, max, and min of TSR
  52. grouped = dataFrameMerge.groupby([Field_PowerFloor, Field_CodeOfTurbine, Field_NameOfTurbine]).agg({
  53. Field_WindSpeed: 'median',
  54. Field_RotorSpeed: 'median',
  55. Field_GeneratorSpeed: 'median',
  56. Field_TSR: ['median', 'max', 'min'],
  57. Field_PowerFarmName: 'max'
  58. }).reset_index()
  59. # Rename columns for clarity post aggregation
  60. grouped.columns = [Field_PowerFloor, Field_CodeOfTurbine, Field_NameOfTurbine, Field_WindSpeed,
  61. Field_RotorSpeed, Field_GeneratorSpeed, Field_TSR, Field_TSRMax, Field_TSRMin, Field_PowerFarmName]
  62. # Sort by 'power_floor'
  63. grouped = grouped.sort_values(by=[Field_CodeOfTurbine, Field_PowerFloor])
  64. returnData = self.plot_tsr_distribution(
  65. grouped, outputAnalysisDir, conf, currTurbineModeInfo)
  66. returnDatas.append(returnData)
  67. returnResult = pd.concat(returnDatas, ignore_index=True)
  68. return returnResult
  69. #------------------------------------------
  70. # dictionary = self.processTurbineData(turbineCodes,conf,[Field_DeviceCode,Field_Time,Field_WindSpeed,Field_ActiverPower,Field_RotorSpeed,Field_GeneratorSpeed])
  71. # dataFrameMerge = self.userDataFrame(dictionary,conf.dataContract.configAnalysis,self)
  72. # # return self.plot_tsr_distribution(self.tsr(dataFrameMerge), outputAnalysisDir, conf)
  73. # dataFrameMerge[Field_PowerFarmName] = self.currPowerFarmInfo.loc[Field_PowerFarmName]
  74. # # Calculate 'power_floor'
  75. # dataFrameMerge[Field_PowerFloor] = (
  76. # dataFrameMerge[Field_ActiverPower] / 10).astype(int) * 10
  77. # # Ensure the necessary columns are of float type
  78. # dataFrameMerge[Field_WindSpeed] = dataFrameMerge[Field_WindSpeed].astype(float)
  79. # dataFrameMerge[Field_RotorSpeed] = dataFrameMerge[Field_RotorSpeed].astype(float)
  80. # dataFrameMerge[Field_GeneratorSpeed] = dataFrameMerge[Field_GeneratorSpeed].astype(float)
  81. # # Group by 'power_floor' and calculate median, max, and min of TSR
  82. # grouped = dataFrameMerge.groupby([Field_PowerFloor, Field_CodeOfTurbine, Field_NameOfTurbine]).agg({
  83. # Field_WindSpeed: 'median',
  84. # Field_RotorSpeed: 'median',
  85. # Field_GeneratorSpeed: 'median',
  86. # Field_TSR: ['median', 'max', 'min'],
  87. # Field_PowerFarmName: 'max'
  88. # }).reset_index()
  89. # # Rename columns for clarity post aggregation
  90. # grouped.columns = [Field_PowerFloor, Field_CodeOfTurbine, Field_NameOfTurbine, Field_WindSpeed,
  91. # Field_RotorSpeed, Field_GeneratorSpeed, Field_TSR, Field_TSRMax, Field_TSRMin, Field_PowerFarmName]
  92. # # Sort by 'power_floor'
  93. # grouped = grouped.sort_values(by=[Field_CodeOfTurbine, Field_PowerFloor])
  94. # return self.plot_tsr_distribution(grouped, outputAnalysisDir, conf)
  95. def plot_tsr_distribution(self, dataFrameMerge: pd.DataFrame, outputAnalysisDir, conf: Contract, turbineModelInfo: pd.Series):
  96. """
  97. Generates tsr distribution plots for turbines in a wind farm.
  98. Parameters:
  99. - csvFileDirOfCp: str, path to the directory containing input CSV files.
  100. - farm_name: str, name of the wind farm.
  101. - encoding: str, encoding of the input CSV files. Defaults to 'utf-8'.
  102. """
  103. x_name = Field_PowerFloor
  104. y_name = Field_TSR
  105. upLimitOfTSR = 20
  106. # 绘制全场TSR分布图
  107. fig = go.Figure()
  108. # colors = px.colors.sequential.Turbo
  109. # 遍历不同的turbine来添加线条
  110. for turbine in dataFrameMerge[Field_NameOfTurbine].unique():
  111. turbine_data = dataFrameMerge[dataFrameMerge[Field_NameOfTurbine] == turbine]
  112. fig.add_trace(go.Scatter(x=turbine_data[x_name], y=turbine_data[y_name],
  113. mode='lines',
  114. # line=dict(color=colors[idx % len(colors)]),
  115. name=turbine))
  116. fig.update_layout(
  117. title={
  118. "text": f'叶尖速比分布-{turbineModelInfo[Field_MachineTypeCode]}',
  119. 'x': 0.5
  120. },
  121. xaxis=dict(
  122. title='最小功率',
  123. dtick=200,
  124. tickangle=-45,
  125. range=[0, 1800]),
  126. yaxis=dict(
  127. title='叶尖速比',
  128. dtick=self.axisStepTSR,
  129. range=[self.axisLowerLimitTSR,
  130. self.axisUpperLimitTSR]
  131. ),
  132. legend=dict(
  133. orientation="h", # Horizontal orientation
  134. xanchor="center", # Anchor the legend to the center
  135. x=0.5, # Position legend at the center of the x-axis
  136. y=-0.2, # Position legend below the x-axis
  137. # itemsizing='constant', # Keep the size of the legend entries constant
  138. # itemwidth=50
  139. )
  140. )
  141. # 设置x轴标签旋转
  142. fig.update_xaxes(tickangle=-45)
  143. # 保存图形
  144. # fig.write_image(csvFileDirOfCp + r"/{}-TSR-Distibute.png".format(confData.farm_name),format='png',width=800, height=500,scale=3)
  145. # fig.show()
  146. # 保存HTML
  147. htmlFileName = f"{dataFrameMerge[Field_PowerFarmName].iloc[0]}-TSR-Distribution-{turbineModelInfo[Field_MillTypeCode]}.html"
  148. htmlFilePath = os.path.join(outputAnalysisDir, htmlFileName)
  149. fig.write_html(htmlFilePath)
  150. result_rows = []
  151. result_rows.append({
  152. Field_Return_TypeAnalyst: self.typeAnalyst(),
  153. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  154. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  155. Field_CodeOfTurbine: 'total',
  156. Field_Return_FilePath: htmlFilePath,
  157. Field_Return_IsSaveDatabase: True
  158. })
  159. # 绘制每个设备的TSR分布图
  160. for name, group in dataFrameMerge.groupby([Field_NameOfTurbine, Field_CodeOfTurbine]):
  161. fig = go.Figure()
  162. # 循环绘制turbine的线条
  163. for turbine in dataFrameMerge[Field_NameOfTurbine].unique():
  164. turbine_data = dataFrameMerge[dataFrameMerge[Field_NameOfTurbine] == turbine]
  165. fig.add_trace(go.Scatter(x=turbine_data[x_name],
  166. y=turbine_data[y_name],
  167. mode='lines',
  168. line=dict(color='lightgrey'),
  169. showlegend=False))
  170. fig.add_trace(go.Scatter(x=group[x_name],
  171. y=group[y_name],
  172. mode='lines',
  173. line=dict(color='darkblue'),
  174. showlegend=False))
  175. fig.update_layout(
  176. title={"text": '机组: {}'.format(name[0])},
  177. # margin=dict(
  178. # t=35, # 顶部 margin,减小这个值可以使标题更靠近图形
  179. # l=60, # 左侧 margin
  180. # r=60, # 右侧 margin
  181. # b=40, # 底部 margin
  182. # ),
  183. xaxis=dict(
  184. title='功率',
  185. dtick=200,
  186. tickangle=-45,
  187. range=[0, 1800]),
  188. yaxis=dict(
  189. title='叶尖速比',
  190. dtick=self.axisStepTSR,
  191. range=[self.axisLowerLimitTSR,
  192. self.axisUpperLimitTSR]
  193. )
  194. )
  195. fig.update_xaxes(tickangle=-45)
  196. # 保存图像
  197. pngFileName = f"{name[0]}.png"
  198. pngFilePath = os.path.join(outputAnalysisDir, pngFileName)
  199. fig.write_image(pngFilePath, scale=3)
  200. # 保存HTML
  201. htmlFileName = f"{name[0]}.html"
  202. htmlFilePath = os.path.join(outputAnalysisDir, htmlFileName)
  203. fig.write_html(htmlFilePath)
  204. result_rows.append({
  205. Field_Return_TypeAnalyst: self.typeAnalyst(),
  206. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  207. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  208. Field_CodeOfTurbine: name[1],
  209. Field_Return_FilePath: pngFilePath,
  210. Field_Return_IsSaveDatabase: False
  211. })
  212. result_rows.append({
  213. Field_Return_TypeAnalyst: self.typeAnalyst(),
  214. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  215. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  216. Field_CodeOfTurbine: name[1],
  217. Field_Return_FilePath: htmlFilePath,
  218. Field_Return_IsSaveDatabase: True
  219. })
  220. result_df = pd.DataFrame(result_rows)
  221. return result_df