tsrCpPowerAnalyst.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275
  1. import os
  2. import pandas as pd
  3. import math
  4. import numpy as np
  5. from plotly.subplots import make_subplots
  6. import plotly.express as px
  7. import pandas as pd
  8. import plotly.graph_objects as go
  9. import seaborn as sns
  10. from matplotlib.ticker import MultipleLocator
  11. from behavior.analystWithGoodPoint import AnalystWithGoodPoint
  12. from utils.directoryUtil import DirectoryUtil as dir
  13. from algorithmContract.confBusiness import *
  14. from algorithmContract.contract import Contract
  15. class TSRCpPowerAnalyst(AnalystWithGoodPoint):
  16. """
  17. 风电机组叶尖速比-Cp-功率分析
  18. """
  19. def typeAnalyst(self):
  20. return "tsr_cp_power"
  21. def turbinesAnalysis(self, outputAnalysisDir, conf: Contract, turbineCodes):
  22. dictionary = self.processTurbineData(turbineCodes,conf,[Field_DeviceCode,Field_Time,Field_WindSpeed,Field_ActiverPower,Field_RotorSpeed, Field_GeneratorSpeed])
  23. dataFrameOfTurbines = self.userDataFrame(
  24. dictionary, conf.dataContract.configAnalysis, self)
  25. # 检查所需列是否存在
  26. required_columns = {Field_WindSpeed, Field_RotorSpeed,Field_PowerFloor,Field_GeneratorSpeed,Field_Cp}
  27. if not required_columns.issubset(dataFrameOfTurbines.columns):
  28. raise ValueError(f"DataFrame缺少必要的列。需要的列有: {required_columns}")
  29. turbrineInfos = self.common.getTurbineInfos(
  30. conf.dataContract.dataFilter.powerFarmID, turbineCodes, self.turbineInfo)
  31. groupedOfTurbineModel = turbrineInfos.groupby(Field_MillTypeCode)
  32. returnDatas = []
  33. for turbineModelCode, group in groupedOfTurbineModel:
  34. currTurbineCodes = group[Field_CodeOfTurbine].unique().tolist()
  35. currTurbineModeInfo = self.common.getTurbineModelByCode(
  36. turbineModelCode, self.turbineModelInfo)
  37. currDataFrameOfTurbines = dataFrameOfTurbines[dataFrameOfTurbines[Field_CodeOfTurbine].isin(
  38. currTurbineCodes)]
  39. #创建一个与dataFrameOfTurbines相同的dataFrameMerge
  40. dataFrameMerge=currDataFrameOfTurbines.copy()
  41. # return self.plot_tsr_distribution(self.tsr(dataFrameMerge), outputAnalysisDir, conf)
  42. dataFrameMerge[Field_PowerFarmName] = self.currPowerFarmInfo.loc[Field_PowerFarmName]
  43. # Calculate 'power_floor'
  44. dataFrameMerge[Field_PowerFloor] = (
  45. dataFrameMerge[Field_ActiverPower] / 10).astype(int) * 10
  46. # Ensure the necessary columns are of float type
  47. dataFrameMerge[Field_WindSpeed] = dataFrameMerge[Field_WindSpeed].astype(float)
  48. dataFrameMerge[Field_RotorSpeed] = dataFrameMerge[Field_RotorSpeed].astype(float)
  49. dataFrameMerge[Field_Cp] = dataFrameMerge[Field_Cp].astype(float)
  50. dataFrameMerge[Field_GeneratorSpeed] = dataFrameMerge[Field_GeneratorSpeed].astype(float)
  51. max_cutin = self.turbineModelInfo[Field_CutInWS].max()
  52. min_rated = self.turbineModelInfo[Field_RatedWindSpeed].min()
  53. dataFrameMerge = dataFrameMerge[(dataFrameMerge[Field_WindSpeed] > max_cutin) & (dataFrameMerge[Field_WindSpeed] < min_rated)]
  54. # Group by 'power_floor' and calculate median, max, and min of TSR
  55. dataFrameMerge[Field_TSRModified] = dataFrameMerge[Field_TSR] / (dataFrameMerge[Field_Cp] ** (1/3))
  56. grouped = dataFrameMerge.groupby([Field_PowerFloor, Field_CodeOfTurbine, Field_NameOfTurbine]).agg({
  57. Field_WindSpeed: 'median',
  58. Field_RotorSpeed: 'median',
  59. Field_GeneratorSpeed: 'median',
  60. 'tsr_modified': 'median',
  61. Field_Cp: 'median',
  62. Field_PowerFarmName: 'max'
  63. }).reset_index()
  64. # Rename columns for clarity post aggregation
  65. grouped.columns = [Field_PowerFloor, Field_CodeOfTurbine, Field_NameOfTurbine, Field_WindSpeed,
  66. Field_RotorSpeed, Field_GeneratorSpeed, Field_TSRModified, Field_Cp, Field_PowerFarmName]
  67. # Sort by 'power_floor'
  68. grouped = grouped.sort_values(by=[Field_CodeOfTurbine, Field_PowerFloor])
  69. returnData = self.plot_tsrcp_distribution(
  70. grouped, outputAnalysisDir, conf, currTurbineModeInfo)
  71. returnDatas.append(returnData)
  72. returnResult = pd.concat(returnDatas, ignore_index=True)
  73. return returnResult
  74. # ---------------------------------------------------
  75. # dataFrameMerge = self.userDataFrame(dictionary,conf.dataContract.configAnalysis,self)
  76. # # return self.plot_tsr_distribution(self.tsr(dataFrameMerge), outputAnalysisDir, conf)
  77. # dataFrameMerge[Field_PowerFarmName] = self.currPowerFarmInfo.loc[Field_PowerFarmName]
  78. # # Calculate 'power_floor'
  79. # dataFrameMerge[Field_PowerFloor] = (
  80. # dataFrameMerge[Field_ActiverPower] / 10).astype(int) * 10
  81. # # Ensure the necessary columns are of float type
  82. # dataFrameMerge[Field_WindSpeed] = dataFrameMerge[Field_WindSpeed].astype(float)
  83. # dataFrameMerge[Field_RotorSpeed] = dataFrameMerge[Field_RotorSpeed].astype(float)
  84. # dataFrameMerge[Field_Cp] = dataFrameMerge[Field_Cp].astype(float)
  85. # dataFrameMerge[Field_GeneratorSpeed] = dataFrameMerge[Field_GeneratorSpeed].astype(float)
  86. # max_cutin = self.turbineModelInfo[Field_CutInWS].max()
  87. # min_rated = self.turbineModelInfo[Field_RatedWindSpeed].min()
  88. # dataFrameMerge = dataFrameMerge[(dataFrameMerge[Field_WindSpeed] > max_cutin) & (dataFrameMerge[Field_WindSpeed] < min_rated)]
  89. # # Group by 'power_floor' and calculate median, max, and min of TSR
  90. # dataFrameMerge[Field_TSRModified] = dataFrameMerge[Field_TSR] / (dataFrameMerge[Field_Cp] ** (1/3))
  91. # grouped = dataFrameMerge.groupby([Field_PowerFloor, Field_CodeOfTurbine, Field_NameOfTurbine]).agg({
  92. # Field_WindSpeed: 'median',
  93. # Field_RotorSpeed: 'median',
  94. # Field_GeneratorSpeed: 'median',
  95. # 'tsr_modified': 'median',
  96. # Field_Cp: 'median',
  97. # Field_PowerFarmName: 'max'
  98. # }).reset_index()
  99. # # Rename columns for clarity post aggregation
  100. # grouped.columns = [Field_PowerFloor, Field_CodeOfTurbine, Field_NameOfTurbine, Field_WindSpeed,
  101. # Field_RotorSpeed, Field_GeneratorSpeed, Field_TSRModified, Field_Cp, Field_PowerFarmName]
  102. # # Sort by 'power_floor'
  103. # grouped = grouped.sort_values(by=[Field_CodeOfTurbine, Field_PowerFloor])
  104. # return self.plot_tsrcp_distribution(grouped, outputAnalysisDir, conf)
  105. def plot_tsrcp_distribution(self, dataFrameMerge: pd.DataFrame, outputAnalysisDir, conf: Contract, turbineModelInfo: pd.Series):
  106. """
  107. Generates tsr distribution plots for turbines in a wind farm.
  108. Parameters:
  109. - outputAnalysisDir: str, path to the directory containing input CSV files.
  110. - farm_name: str, name of the wind farm.
  111. - encoding: str, encoding of the input CSV files. Defaults to 'utf-8'.
  112. """
  113. x_name = Field_PowerFloor
  114. y_name = Field_TSRModified
  115. upLimitOfTSR = 20
  116. # 绘制全场TSR分布图
  117. fig = go.Figure()
  118. # colors = px.colors.sequential.Turbo
  119. # 遍历不同的turbine来添加线条
  120. for turbine in dataFrameMerge[Field_NameOfTurbine].unique():
  121. turbine_data = dataFrameMerge[dataFrameMerge[Field_NameOfTurbine] == turbine]
  122. fig.add_trace(go.Scatter(x=turbine_data[x_name], y=turbine_data[y_name],
  123. mode='lines',
  124. line=dict(width=1.2),
  125. # line=dict(color=colors[idx % len(colors)]),
  126. name=turbine))
  127. fig.update_layout(
  128. title={
  129. "text": f'叶尖速比-风能利用系数分析-功率分布图-{turbineModelInfo[Field_MachineTypeCode]}',
  130. 'x': 0.5
  131. },
  132. xaxis=dict(
  133. title='功率',
  134. dtick=200,
  135. tickangle=-45,
  136. range=[0, 1800]),
  137. yaxis=dict(
  138. title= '叶尖速比/风能利用系数分析^(1/3)', # r"$\frac{TSR}{Cp^{1/3}}$" # 仅在.png格式下正确显示
  139. dtick=self.axisStepTSR,
  140. range=[self.axisLowerLimitTSR,
  141. self.axisUpperLimitTSR]
  142. ),
  143. legend=dict(
  144. orientation="h", # Horizontal orientation
  145. xanchor="center", # Anchor the legend to the center
  146. x=0.5, # Position legend at the center of the x-axis
  147. y=-0.2, # Position legend below the x-axis
  148. # itemsizing='constant', # Keep the size of the legend entries constant
  149. # itemwidth=50
  150. )
  151. )
  152. # 设置x轴标签旋转
  153. fig.update_xaxes(tickangle=-45)
  154. # 保存图形
  155. # fig.write_image(outputAnalysisDir + r"/{}-TSR-Distibute.png".format(confData.farm_name),format='png',width=800, height=500,scale=3)
  156. # fig.show()
  157. # 保存HTML
  158. # htmlFileName = f"{dataFrameMerge[Field_PowerFarmName].iloc[0]}-TSR-Cp-Power-Distribution.html"
  159. htmlFileName = f"{turbineModelInfo[Field_MillTypeCode]}-TSR-Cp-Power-Distribution.html"
  160. htmlFilePath = os.path.join(outputAnalysisDir, htmlFileName)
  161. fig.write_html(htmlFilePath)
  162. result_rows = []
  163. result_rows.append({
  164. Field_Return_TypeAnalyst: self.typeAnalyst(),
  165. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  166. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  167. Field_CodeOfTurbine: 'total',
  168. Field_Return_FilePath: htmlFilePath,
  169. Field_Return_IsSaveDatabase: True
  170. })
  171. # 绘制每个设备的TSR分布图
  172. for name, group in dataFrameMerge.groupby([Field_NameOfTurbine, Field_CodeOfTurbine]):
  173. fig = go.Figure()
  174. # 循环绘制turbine的线条
  175. for turbine in dataFrameMerge[Field_NameOfTurbine].unique():
  176. turbine_data = dataFrameMerge[dataFrameMerge[Field_NameOfTurbine] == turbine]
  177. fig.add_trace(go.Scatter(x=turbine_data[x_name],
  178. y=turbine_data[y_name],
  179. mode='lines',
  180. line=dict(color='lightgrey', width=1.2),
  181. showlegend=False))
  182. fig.add_trace(go.Scatter(x=group[x_name],
  183. y=group[y_name],
  184. mode='lines',
  185. line=dict(color='darkblue', width=1.5),
  186. showlegend=False))
  187. fig.update_layout(
  188. title={"text": '机组: {}'.format(name[0])},
  189. # margin=dict(
  190. # t=35, # 顶部 margin,减小这个值可以使标题更靠近图形
  191. # l=60, # 左侧 margin
  192. # r=60, # 右侧 margin
  193. # b=40, # 底部 margin
  194. # ),
  195. xaxis=dict(
  196. title='功率',
  197. dtick=200,
  198. tickangle=-45,
  199. range=[0, 1800]),
  200. yaxis=dict(
  201. title= '叶尖速比/风能利用系数分析^(1/3)', # r"$\frac{TSR}{Cp^{1/3}}$" # 仅在.png格式下正确显示
  202. dtick=self.axisStepTSR,
  203. range=[self.axisLowerLimitTSR,
  204. self.axisUpperLimitTSR]
  205. )
  206. )
  207. fig.update_xaxes(tickangle=-45)
  208. # 保存图像
  209. pngFileName = f"{name[0]}.png"
  210. pngFilePath = os.path.join(outputAnalysisDir, pngFileName)
  211. fig.write_image(pngFilePath, scale=3)
  212. # 保存HTML
  213. htmlFileName = f"{name[0]}.html"
  214. htmlFilePath = os.path.join(outputAnalysisDir, htmlFileName)
  215. fig.write_html(htmlFilePath)
  216. result_rows.append({
  217. Field_Return_TypeAnalyst: self.typeAnalyst(),
  218. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  219. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  220. Field_CodeOfTurbine: name[1],
  221. Field_Return_FilePath: pngFilePath,
  222. Field_Return_IsSaveDatabase: False
  223. })
  224. result_rows.append({
  225. Field_Return_TypeAnalyst: self.typeAnalyst(),
  226. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  227. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  228. Field_CodeOfTurbine: name[1],
  229. Field_Return_FilePath: htmlFilePath,
  230. Field_Return_IsSaveDatabase: True
  231. })
  232. result_df = pd.DataFrame(result_rows)
  233. return result_df