temperatureLargeComponentsAnalyst.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. import os
  2. import pandas as pd
  3. import plotly.express as px
  4. import plotly.graph_objects as go
  5. from algorithmContract.confBusiness import *
  6. from algorithmContract.contract import Contract
  7. from behavior.analystWithGoodBadLimitPoint import AnalystWithGoodBadLimitPoint
  8. from plotly.subplots import make_subplots
  9. from utils.directoryUtil import DirectoryUtil as dir
  10. class Generator:
  11. def __init__(self) -> None:
  12. self.fieldTemperatorOfDEBearing = None
  13. self.fieldTemperatorOfNDEBearing = None
  14. TemperatureColumns = {Field_MainBearTemp: "主轴承温度",
  15. Field_GbMsBearTemp: "齿轮箱中速轴温度",
  16. Field_GbLsBearTemp: "齿轮箱低速轴温度",
  17. Field_GbHsBearTemp: "齿轮箱高速轴温度",
  18. Field_GeneratorDE: "发电机驱动端轴承温度",
  19. Field_GeneratorNDE: "发电机非驱动端轴承温度",
  20. Field_GenWiTemp1: "发电机绕组温度"}
  21. GeneratorTemperatureAnslysisColumns = [
  22. Field_GeneratorDE, Field_GeneratorNDE, Field_NacTemp]
  23. class TemperatureLargeComponentsAnalyst(AnalystWithGoodBadLimitPoint):
  24. """
  25. 风电机组大部件温升分析
  26. """
  27. def typeAnalyst(self):
  28. return "temperature_large_components"
  29. def getUseColumns(self, dataFrame: pd.DataFrame, temperatureColumns: list[dict]):
  30. # 获取非全为空的列名
  31. non_empty_cols = self.getNoneEmptyFields(dataFrame, temperatureColumns)
  32. useCols = []
  33. # useCols.append(Field_Time)
  34. useCols.append(Field_ActiverPower)
  35. if not self.common.isNone(Field_EnvTemp) and Field_EnvTemp in dataFrame.columns:
  36. useCols.append(Field_EnvTemp)
  37. if not self.common.isNone(Field_NacTemp) and Field_NacTemp in dataFrame.columns:
  38. useCols.append(Field_NacTemp)
  39. useCols.extend(non_empty_cols)
  40. return useCols
  41. def getNoneEmptyFields(self, dataFrame: pd.DataFrame, temperatureColumns: dict) -> list:
  42. # 使用set和列表推导式来获取在DataFrame中存在的字段
  43. existing_fields = [
  44. key for key in TemperatureColumns.keys() if key in dataFrame.columns
  45. ]
  46. # 检查指定列中非全为空的列
  47. non_empty_columns = dataFrame[existing_fields].apply(
  48. lambda x: x.notnull().any(), axis=0)
  49. # 获取非全为空的列名
  50. noneEmptyFields = non_empty_columns[non_empty_columns].index.tolist()
  51. return noneEmptyFields
  52. def dataReprocess(self, dataFrame: pd.DataFrame, non_empty_cols: list):
  53. # Initialize an empty df for aggregation
  54. agg_dict = {col: 'median' for col in non_empty_cols}
  55. # Group by 'power_floor' and aggregate
  56. grouped = dataFrame.groupby([Field_PowerFloor, Field_CodeOfTurbine, Field_NameOfTurbine]).agg(agg_dict).reset_index()
  57. # Sort by 'power_floor'
  58. grouped.sort_values(
  59. [Field_PowerFloor, Field_CodeOfTurbine, Field_NameOfTurbine], inplace=True)
  60. return grouped
  61. def turbinesAnalysis(self, outputAnalysisDir, conf: Contract, turbineCodes):
  62. select=[Field_DeviceCode, Field_Time, Field_WindSpeed, Field_ActiverPower]
  63. select=select+[Field_EnvTemp,Field_NacTemp]+list(TemperatureColumns.keys())
  64. dictionary = self.processTurbineData(turbineCodes, conf,select )
  65. dataFrameOfTurbines = self.userDataFrame(
  66. dictionary, conf.dataContract.configAnalysis, self)
  67. turbrineInfos = self.common.getTurbineInfos(
  68. conf.dataContract.dataFilter.powerFarmID, turbineCodes, self.turbineInfo)
  69. groupedOfTurbineModel = turbrineInfos.groupby(Field_MillTypeCode)
  70. returnDatas = []
  71. for turbineModelCode, group in groupedOfTurbineModel:
  72. currTurbineCodes = group[Field_CodeOfTurbine].unique().tolist()
  73. currTurbineModeInfo = self.common.getTurbineModelByCode(
  74. turbineModelCode, self.turbineModelInfo)
  75. currDataFrameOfTurbines = dataFrameOfTurbines[dataFrameOfTurbines[Field_CodeOfTurbine].isin(
  76. currTurbineCodes)]
  77. # 将 currTurbineInfos 转换为字典
  78. currTurbineInfos_dict = turbrineInfos.set_index(Field_CodeOfTurbine)[Field_NameOfTurbine].to_dict()
  79. # 使用 map 函数来填充 Field_NameOfTurbine 列
  80. currDataFrameOfTurbines[Field_NameOfTurbine] = currDataFrameOfTurbines[Field_CodeOfTurbine].map(currTurbineInfos_dict).fillna("")
  81. # 获取非全为空的列名
  82. non_empty_cols = self.getUseColumns(currDataFrameOfTurbines, TemperatureColumns)
  83. dataFrame = self.dataReprocess(currDataFrameOfTurbines, non_empty_cols)
  84. # non_empty_cols.remove(Field_Time)
  85. non_empty_cols.remove(Field_ActiverPower)
  86. non_empty_cols.remove(Field_EnvTemp)
  87. non_empty_cols.remove(Field_NacTemp)
  88. returnData= self.drawTemperatureGraph(dataFrame, outputAnalysisDir, conf, non_empty_cols,currTurbineModeInfo)
  89. returnDatas.append(returnData)
  90. returnResult = pd.concat(returnDatas, ignore_index=True)
  91. return returnResult
  92. def drawTemperatureGraph(self, dataFrameMerge: pd.DataFrame, outputAnalysisDir, conf: Contract, temperatureCols: list, turbineModelInfo: pd.Series):
  93. """
  94. 大部件温度传感器分析
  95. """
  96. y_name = '温度'
  97. outputDir = os.path.join(outputAnalysisDir, "GeneratorTemperature")
  98. dir.create_directory(outputDir)
  99. # 按设备名分组数据
  100. grouped = dataFrameMerge.groupby(Field_NameOfTurbine)
  101. result_rows = []
  102. # Create output directories if they don't exist
  103. for column in temperatureCols:
  104. if not column in dataFrameMerge.columns:
  105. continue
  106. columnZH = TemperatureColumns.get(column)
  107. outputPath = os.path.join(outputAnalysisDir, column)
  108. dir.create_directory(outputPath)
  109. fig = go.Figure()
  110. # 获取 Plotly Express 中的颜色序列
  111. colors = px.colors.sequential.Turbo
  112. # Add traces for each turbine
  113. for idx, (name, group) in enumerate(grouped):
  114. fig.add_trace(go.Scatter(
  115. x=group[Field_PowerFloor],
  116. y=group[column],
  117. mode='lines',
  118. name=name,
  119. # 从 'Rainbow' 色组中循环选择颜色
  120. line=dict(color=colors[idx % len(colors)])
  121. ))
  122. # Update layout and axes
  123. fig.update_layout(
  124. title={'text': f'{columnZH}分布-{turbineModelInfo[Field_MachineTypeCode]}', 'x': 0.5},
  125. xaxis_title='功率',
  126. yaxis_title=y_name,
  127. xaxis=dict(
  128. range=[
  129. self.axisLowerLimitActivePower,
  130. self.axisUpperLimitActivePower
  131. ],
  132. dtick=self.axisStepActivePower
  133. ),
  134. yaxis=dict(
  135. range=[0, 100],
  136. dtick=20
  137. ),
  138. # legend_title_text='Turbine',
  139. legend=dict(
  140. orientation="h", # Horizontal orientation
  141. xanchor="center", # Anchor the legend to the center
  142. x=0.5, # Position legend at the center of the x-axis
  143. y=-0.2, # Position legend below the x-axis
  144. # itemsizing='constant', # Keep the size of the legend entries constant
  145. # # Set the width of the legend items (in pixels)
  146. # itemwidth=50
  147. )
  148. )
  149. # Save the plot as a PNG/HTML file
  150. filePathOfImage = os.path.join(outputPath, f"{columnZH}-{turbineModelInfo[Field_MillTypeCode]}.png")
  151. fig.write_image(filePathOfImage, scale=3)
  152. filePathOfHtml = os.path.join(outputPath, f"{columnZH}-{turbineModelInfo[Field_MillTypeCode]}.html")
  153. fig.write_html(filePathOfHtml)
  154. result_rows.append({
  155. Field_Return_TypeAnalyst: self.typeAnalyst(),
  156. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  157. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  158. Field_CodeOfTurbine: Const_Output_Total,
  159. Field_Return_FilePath: filePathOfImage,
  160. Field_Return_IsSaveDatabase: False
  161. })
  162. result_rows.append({
  163. Field_Return_TypeAnalyst: self.typeAnalyst(),
  164. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  165. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  166. Field_CodeOfTurbine: Const_Output_Total,
  167. Field_Return_FilePath: filePathOfHtml,
  168. Field_Return_IsSaveDatabase: True
  169. })
  170. # Create individual plots with specific turbine highlighted
  171. # for name, group in grouped:
  172. for idx, (name, group) in enumerate(grouped):
  173. single_fig = go.Figure()
  174. # Add all other turbines in grey first
  175. # for other_name, other_group in grouped:
  176. for idx, (other_name, other_group) in enumerate(grouped):
  177. if other_name != name:
  178. single_fig.add_trace(go.Scatter(
  179. x=other_group[Field_PowerFloor],
  180. y=other_group[column],
  181. mode='lines',
  182. name=other_name,
  183. line=dict(color='lightgrey', width=1),
  184. showlegend=False
  185. ))
  186. # Add the turbine of interest in dark blue
  187. single_fig.add_trace(go.Scatter(
  188. x=group[Field_PowerFloor],
  189. y=group[column],
  190. mode='lines',
  191. # Make it slightly thicker for visibility
  192. line=dict(color='darkblue', width=2),
  193. showlegend=False # Disable legend for cleaner look
  194. ))
  195. # Update layout and axes for the individual plot
  196. single_fig.update_layout(
  197. # title={'text': f'Turbine: {name}', 'x': 0.5},
  198. title={'text': f'{columnZH}分布: {name}', 'x': 0.5},
  199. xaxis_title='功率',
  200. yaxis_title=y_name,
  201. xaxis=dict(
  202. range=[0, Field_RatedPower],
  203. dtick=200
  204. ),
  205. yaxis=dict(
  206. range=[0, 100],
  207. dtick=20
  208. )
  209. )
  210. filePathOfImage = os.path.join(
  211. outputPath, f"{name}.png")
  212. single_fig.write_image(filePathOfImage, scale=3)
  213. filePathOfHtml = os.path.join(
  214. outputPath, f"{name}.html")
  215. single_fig.write_html(filePathOfHtml)
  216. result_rows.append({
  217. Field_Return_TypeAnalyst: self.typeAnalyst(),
  218. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  219. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  220. Field_CodeOfTurbine: group[Field_CodeOfTurbine].iloc[0],
  221. Field_Return_FilePath: filePathOfImage,
  222. Field_Return_IsSaveDatabase: False
  223. })
  224. result_rows.append({
  225. Field_Return_TypeAnalyst: self.typeAnalyst(),
  226. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  227. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  228. Field_CodeOfTurbine: group[Field_CodeOfTurbine].iloc[0],
  229. Field_Return_FilePath: filePathOfHtml,
  230. Field_Return_IsSaveDatabase: True
  231. })
  232. for idx, (name, group) in enumerate(grouped):
  233. # 绘制每台机组发电机的,驱动轴承温度、非驱动轴承温度、发电机轴承温度BIAS、发电机轴承温度和机舱温度BIAS 均与有功功率的折线图
  234. if not Field_GeneratorDE in group.columns or not Field_GeneratorNDE in group.columns or group[Field_GeneratorDE].isna().all() or group[Field_GeneratorNDE].isna().all():
  235. self.logger.warning(f"{name} 不具备发电机温度测点,或测点值全为空")
  236. continue
  237. refFieldTemperature = Field_EnvTemp if group[Field_NacTemp].isna(
  238. ).all() else Field_NacTemp
  239. result_rows1 = self.drawGeneratorTemperature(
  240. group, conf, Field_GeneratorDE, Field_GeneratorNDE, refFieldTemperature, Field_PowerFloor, name, outputDir)
  241. result_rows.extend(result_rows1)
  242. result_df = pd.DataFrame(result_rows)
  243. return result_df
  244. def drawGeneratorTemperature(self, dataFrame: pd.DataFrame, conf: Contract, yAxisDE, yAxisNDE, diffTemperature, xAxis, turbineName, outputDir):
  245. # 发电机驱动轴承温度 和 发电机非驱动轴承 温差
  246. fieldBIAS_DE_NDE = 'BIAS_DE-NDE'
  247. fieldBIAS_DE = 'BIAS_DE'
  248. fieldBIAS_NDE = 'BIAS_NDE'
  249. # Prepare Data
  250. dataFrame[fieldBIAS_DE] = dataFrame[yAxisDE] - \
  251. dataFrame[diffTemperature]
  252. dataFrame[fieldBIAS_NDE] = dataFrame[yAxisNDE] - \
  253. dataFrame[diffTemperature]
  254. dataFrame[fieldBIAS_DE_NDE] = dataFrame[yAxisDE] - dataFrame[yAxisNDE]
  255. # Create a plot with dual y-axes
  256. fig = make_subplots(specs=[[{"secondary_y": True}]])
  257. # Plot DE Bearing Temperature
  258. fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[yAxisDE], name='驱动端轴承温度', line=dict(
  259. color='blue')), secondary_y=False)
  260. # Plot NDE Bearing Temperature
  261. fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[yAxisNDE], name='非驱动端轴承温度', line=dict(
  262. color='green')), secondary_y=False)
  263. # Plot Temperature Differences
  264. fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[fieldBIAS_DE], name='驱动端轴承温度与机舱温度偏差', line=dict(
  265. color='blue', dash='dot')), secondary_y=False)
  266. fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[fieldBIAS_NDE], name='非驱动端轴承温度与机舱温度偏差', line=dict(
  267. color='green', dash='dot')), secondary_y=False)
  268. fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[fieldBIAS_DE_NDE],
  269. name='驱动端轴承与非驱动端轴承温度偏差', line=dict(color='black', dash='dash')), secondary_y=False)
  270. # Plot Nacelle Temperature
  271. fig.add_trace(go.Scatter(x=dataFrame[xAxis], y=dataFrame[diffTemperature],
  272. name='机舱温度', line=dict(color='orange')), secondary_y=False)
  273. # Add horizontal reference lines
  274. fig.add_hline(y=5, line_dash="dot", line_color="#FFDB58")
  275. fig.add_hline(y=-5, line_dash="dot", line_color="#FFDB58")
  276. fig.add_hline(y=15, line_dash="dot", line_color="red")
  277. fig.add_hline(y=-15, line_dash="dot", line_color="red")
  278. # Update layout
  279. fig.update_layout(
  280. title={'text': f'发电机温度偏差: {turbineName}'},
  281. xaxis_title="功率",
  282. yaxis_title='轴承温度 & 偏差',
  283. legend_title='温度 & 偏差',
  284. legend=dict(x=1.1, y=0.5, bgcolor='rgba(255, 255, 255, 0.5)'),
  285. margin=dict(r=200) # Adjust margin to fit legend
  286. )
  287. fig.update_yaxes(range=[-20, 100], secondary_y=False)
  288. # Save the plot as a PNG/HTML file
  289. filePathOfImage = os.path.join(outputDir, f"{turbineName}.png")
  290. fig.write_image(filePathOfImage, width=800, height=600, scale=3)
  291. filePathOfHtml = os.path.join(outputDir, f"{turbineName}.html")
  292. fig.write_html(filePathOfHtml)
  293. result_rows1 = []
  294. result_rows1.append({
  295. Field_Return_TypeAnalyst: self.typeAnalyst(),
  296. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  297. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  298. Field_CodeOfTurbine: dataFrame[Field_CodeOfTurbine].iloc[0],
  299. Field_Return_FilePath: filePathOfImage,
  300. Field_Return_IsSaveDatabase: False
  301. })
  302. result_rows1.append({
  303. Field_Return_TypeAnalyst: self.typeAnalyst(),
  304. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  305. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  306. Field_CodeOfTurbine: dataFrame[Field_CodeOfTurbine].iloc[0],
  307. Field_Return_FilePath: filePathOfHtml,
  308. Field_Return_IsSaveDatabase: True
  309. })
  310. return result_rows1