1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- import os
- import pandas as pd
- import plotly.express as px
- from algorithmContract.confBusiness import *
- from algorithmContract.contract import Contract
- from behavior.analystNotFilter import AnalystNotFilter
- class WindSpeedAnalyst(AnalystNotFilter):
- def typeAnalyst(self):
- return "wind_speed"
- def turbinesAnalysis(self, outputAnalysisDir, conf: Contract, turbineCodes):
- dictionary=self.processTurbineData(turbineCodes,conf,[Field_DeviceCode,Field_Time,Field_WindSpeed,Field_ActiverPower])
- dataFrameMerge=self.userDataFrame(dictionary,conf.dataContract.configAnalysis,self)
- return self.drawWindSpeedAnalysis(dataFrameMerge, outputAnalysisDir, conf)
- def drawWindSpeedAnalysis(self, dataFrameMerge: pd.DataFrame, outputAnalysisDir, conf: Contract):
- # 检查所需列是否存在
- required_columns = {Field_NameOfTurbine, Field_WindSpeed}
- if not required_columns.issubset(dataFrameMerge.columns):
- raise ValueError(f"DataFrame缺少必要的列。需要的列有: {required_columns}")
- # 确保'风速'列是数值类型
- dataFrameMerge[Field_WindSpeed] = pd.to_numeric(
- dataFrameMerge[Field_WindSpeed], errors='coerce')
- # 计算每个turbine_name的平均风速
- average_wind_speed = dataFrameMerge.groupby(Field_NameOfTurbine)[
- Field_WindSpeed].mean().reset_index()
- # 使用plotly绘制柱状图
- fig = px.bar(average_wind_speed, x=Field_NameOfTurbine,
- y=Field_WindSpeed, title=f'机组平均风速-{self.turbineModelInfo[Field_MachineTypeCode].iloc[0]}')
- # 更新x轴和y轴的标签
- fig.update_xaxes(title_text='机组', tickangle=-45)
- fig.update_yaxes(title_text='平均风速 (m/s)')
- # 如果需要进一步调整标题样式或位置(尽管默认情况下标题是居中的)
- # 可以使用 update_layout 来设置标题的 x 坐标(xanchor)为 'center' 来确保居中
- fig.update_layout(title_x=0.5) # 设置标题的x位置为图的中心
- # Save plot
- filePathOfImage = os.path.join(
- outputAnalysisDir, f"WindSpeedAvg_Turbines.png")
- fig.write_image(filePathOfImage, scale=3)
- filePathOfHtml = os.path.join(
- outputAnalysisDir, f"WindSpeedAvg_Turbines.html")
- fig.write_html(filePathOfHtml)
- result_rows = []
- result_rows.append({
- Field_Return_TypeAnalyst: self.typeAnalyst(),
- Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
- Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
- Field_CodeOfTurbine: "total",
- Field_Return_FilePath: filePathOfImage,
- Field_Return_IsSaveDatabase: False
- })
- result_rows.append({
- Field_Return_TypeAnalyst: self.typeAnalyst(),
- Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
- Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
- Field_CodeOfTurbine: "total",
- Field_Return_FilePath: filePathOfHtml,
- Field_Return_IsSaveDatabase: True
- })
- result_df = pd.DataFrame(result_rows)
- return result_df
|