generatorSpeedTorqueAnalyst.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484
  1. import os
  2. from datetime import datetime
  3. import numpy as np
  4. import pandas as pd
  5. import plotly.express as px
  6. import plotly.graph_objects as go
  7. from algorithmContract.confBusiness import *
  8. from algorithmContract.contract import Contract
  9. from behavior.analystWithGoodPoint import AnalystWithGoodPoint
  10. class GeneratorSpeedTorqueAnalyst(AnalystWithGoodPoint):
  11. """
  12. 风电机组发电机转速-转矩分析
  13. """
  14. def typeAnalyst(self):
  15. return "speed_torque"
  16. def turbinesAnalysis(self, outputAnalysisDir, conf: Contract, turbineCodes):
  17. dictionary = self.processTurbineData(turbineCodes, conf, [
  18. Field_DeviceCode, Field_Time,Field_RotorSpeed,Field_GeneratorSpeed,Field_GeneratorTorque, Field_WindSpeed, Field_ActiverPower])
  19. dataFrameOfTurbines = self.userDataFrame(
  20. dictionary, conf.dataContract.configAnalysis, self)
  21. # 检查所需列是否存在
  22. required_columns = {Field_CodeOfTurbine,Field_RotorSpeed,Field_GeneratorSpeed,Field_GeneratorTorque}
  23. if not required_columns.issubset(dataFrameOfTurbines.columns):
  24. raise ValueError(f"DataFrame缺少必要的列。需要的列有: {required_columns}")
  25. turbrineInfos = self.common.getTurbineInfos(
  26. conf.dataContract.dataFilter.powerFarmID, turbineCodes, self.turbineInfo)
  27. groupedOfTurbineModel = turbrineInfos.groupby(Field_MillTypeCode)
  28. returnDatas = []
  29. for turbineModelCode, group in groupedOfTurbineModel:
  30. currTurbineCodes = group[Field_CodeOfTurbine].unique().tolist()
  31. currTurbineModeInfo = self.common.getTurbineModelByCode(
  32. turbineModelCode, self.turbineModelInfo)
  33. currDataFrameOfTurbines = dataFrameOfTurbines[dataFrameOfTurbines[Field_CodeOfTurbine].isin(
  34. currTurbineCodes)]
  35. # 将 currTurbineInfos 转换为字典
  36. currTurbineInfos_dict = turbrineInfos.set_index(Field_CodeOfTurbine)[Field_NameOfTurbine].to_dict()
  37. # 使用 map 函数来填充 Field_NameOfTurbine 列
  38. currDataFrameOfTurbines[Field_NameOfTurbine] = currDataFrameOfTurbines[Field_CodeOfTurbine].map(currTurbineInfos_dict).fillna("")
  39. result2D = self.drawScatter2DMonthly(
  40. currDataFrameOfTurbines, outputAnalysisDir, conf,currTurbineModeInfo)
  41. returnDatas.extend(result2D)
  42. result3D = self.drawScatterGraph(
  43. currDataFrameOfTurbines, outputAnalysisDir, conf,currTurbineModeInfo)
  44. returnDatas.extend(result3D)
  45. resultTotal = self.drawScatterGraphForTurbines(
  46. currDataFrameOfTurbines, outputAnalysisDir, conf, currTurbineModeInfo)
  47. returnDatas.extend(resultTotal)
  48. returnDataFrame = pd.DataFrame(returnDatas)
  49. return returnDataFrame
  50. def drawScatter2DMonthlyOfTurbine(self, dataFrame: pd.DataFrame, turbineModelInfo: pd.Series, outputAnalysisDir: str, conf: Contract, name: str):
  51. # 设置颜色条参数
  52. dataFrame = dataFrame.sort_values(by=Field_YearMonth)
  53. # 绘制 Plotly 散点图
  54. fig = go.Figure(data=go.Scatter(
  55. x=dataFrame[Field_GeneratorSpeed],
  56. y=dataFrame[Field_GeneratorTorque],
  57. # color=Field_YearMonth,
  58. # color_continuous_scale='Rainbow', # 颜色条样式
  59. mode='markers',
  60. marker=dict(
  61. color=dataFrame['monthIntTime'],
  62. colorscale='Rainbow',
  63. size=3,
  64. opacity=0.7,
  65. colorbar=dict(
  66. tickvals=np.linspace(
  67. dataFrame['monthIntTime'].min(), dataFrame['monthIntTime'].max(), 6),
  68. ticktext=[datetime.fromtimestamp(ts).strftime('%Y-%m') for ts in np.linspace(
  69. dataFrame['monthIntTime'].min(), dataFrame['monthIntTime'].max(), 6)],
  70. thickness=18,
  71. len=1, # 设置颜色条的长度,使其占据整个图的高度
  72. outlinecolor='rgba(255,255,255,0)'
  73. ),
  74. showscale=True
  75. ),
  76. # labels={Field_GeneratorSpeed: 'Generator Speed',
  77. # Field_YearMonth: 'Time', Field_GeneratorTorque: 'Torque'},
  78. showlegend=False
  79. ))
  80. # # 设置固定散点大小
  81. # fig.update_traces(marker=dict(size=3))
  82. # 如果需要颜色轴的刻度和标签
  83. # 以下是以比例方式进行色彩的可视化处理
  84. fig.update_layout(
  85. title={
  86. "text": f'月度发电机转速扭矩散点图: {name[0]}',
  87. # "x": 0.5
  88. },
  89. xaxis=dict(
  90. title='发电机转速',
  91. dtick=self.axisStepGeneratorSpeed,
  92. range=[self.axisLowerLimitGeneratorSpeed,
  93. self.axisUpperLimitGeneratorSpeed],
  94. tickangle=-45
  95. ),
  96. yaxis=dict(
  97. title='扭矩',
  98. dtick=self.axisStepGeneratorTorque,
  99. range=[self.axisLowerLimitGeneratorTorque,
  100. self.axisUpperLimitGeneratorTorque],
  101. )
  102. # coloraxis=dict(
  103. # colorbar=dict(
  104. # title="Time",
  105. # ticks="outside",
  106. # len=1, # 设置颜色条的长度,使其占据整个图的高度
  107. # thickness=20, # 调整颜色条的宽度
  108. # orientation='v', # 设置颜色条为垂直方向
  109. # tickmode='array', # 确保刻度按顺序排列
  110. # tickvals=dataFrame[Field_YearMonth].unique(
  111. # ).tolist(), # 确保刻度为唯一的年月
  112. # ticktext=dataFrame[Field_YearMonth].unique(
  113. # ).tolist() # 以%Y-%m格式显示标签
  114. # )
  115. # )
  116. )
  117. # 确保从 Series 中提取的是具体的值
  118. engineTypeCode = turbineModelInfo.get(Field_MillTypeCode, "")
  119. if isinstance(engineTypeCode, pd.Series):
  120. engineTypeCode = engineTypeCode.iloc[0]
  121. engineTypeName = turbineModelInfo.get(Field_MachineTypeCode, "")
  122. if isinstance(engineTypeName, pd.Series):
  123. engineTypeName = engineTypeName.iloc[0]
  124. # 使用 apply() 对每个元素调用 datetime.fromtimestamp
  125. dataFrame['monthIntTime']=dataFrame['monthIntTime'].apply(lambda x: datetime.fromtimestamp(x).strftime('%Y-%m'))
  126. # 构建最终的JSON对象
  127. json_output = {
  128. "analysisTypeCode": "发电机转速和转矩分析",
  129. "engineCode": engineTypeCode,
  130. "engineTypeName": engineTypeName,
  131. "xaixs": "发电机转速(r/min)",
  132. "yaixs": "扭矩(N·m)",
  133. "data": [{
  134. "engineName": name[0],
  135. "engineCode": name[1],
  136. "title":f' 发电机转速和转矩分析{name[0]}',
  137. "xData": dataFrame[Field_GeneratorSpeed].tolist(),
  138. "yData":dataFrame[Field_GeneratorTorque].tolist(),
  139. "color": dataFrame['monthIntTime'].tolist(),
  140. "colorbartitle": "时间",
  141. "mode":'markers'
  142. }]
  143. }
  144. # 保存图片
  145. # outputFilePathPNG = os.path.join(
  146. # outputAnalysisDir, f"{name[0]}.png")
  147. # fig.write_image(outputFilePathPNG, width=800, height=600, scale=3)
  148. # # 保存html
  149. # outputFileHtml = os.path.join(outputAnalysisDir, f"{name[0]}.html")
  150. # fig.write_html(outputFileHtml)
  151. # 将JSON对象保存到文件
  152. output_json_path = os.path.join(outputAnalysisDir, f"speed_torque{name[0]}.json")
  153. with open(output_json_path, 'w', encoding='utf-8') as f:
  154. import json
  155. json.dump(json_output, f, ensure_ascii=False, indent=4)
  156. result = []
  157. # 如果需要返回DataFrame,可以包含文件路径
  158. result.append({
  159. Field_Return_TypeAnalyst: self.typeAnalyst(),
  160. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  161. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  162. Field_CodeOfTurbine: name[1],
  163. Field_Return_FilePath: output_json_path,
  164. Field_Return_IsSaveDatabase: True
  165. })
  166. # result.append({
  167. # Field_Return_TypeAnalyst: self.typeAnalyst(),
  168. # Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  169. # Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  170. # Field_CodeOfTurbine: dataFrame[Field_CodeOfTurbine].iloc[0],
  171. # Field_Return_FilePath: outputFilePathPNG,
  172. # Field_Return_IsSaveDatabase: False
  173. # })
  174. # result.append({
  175. # Field_Return_TypeAnalyst: self.typeAnalyst(),
  176. # Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  177. # Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  178. # Field_CodeOfTurbine: dataFrame[Field_CodeOfTurbine].iloc[0],
  179. # Field_Return_FilePath: outputFileHtml,
  180. # Field_Return_IsSaveDatabase: True
  181. # })
  182. return result
  183. def drawScatterGraphOfTurbine(self, dataFrame: pd.DataFrame,turbineModelInfo: pd.Series,outputAnalysisDir: str, conf: Contract, name: str):
  184. # 创建3D散点图
  185. fig = px.scatter_3d(dataFrame,
  186. x=Field_GeneratorSpeed,
  187. y=Field_YearMonth,
  188. z=Field_GeneratorTorque,
  189. color=Field_YearMonth,
  190. labels={Field_GeneratorSpeed: '发电机转速',
  191. Field_YearMonth: '时间', Field_GeneratorTorque: '扭矩'}
  192. )
  193. # 设置固定散点大小
  194. fig.update_traces(marker=dict(size=1.5))
  195. # 更新图形的布局
  196. fig.update_layout(
  197. title={
  198. "text": f'月度发电机转速扭矩3D散点图: {name[0]}',
  199. "x": 0.5
  200. },
  201. scene=dict(
  202. xaxis=dict(
  203. title='发电机转速',
  204. dtick=self.axisStepGeneratorSpeed, # 设置y轴刻度间隔
  205. range=[self.axisLowerLimitGeneratorSpeed,
  206. self.axisUpperLimitGeneratorSpeed], # 设置y轴的范围
  207. showgrid=True, # 显示网格线
  208. ),
  209. yaxis=dict(
  210. title='时间',
  211. tickformat='%Y-%m', # 日期格式,
  212. dtick='M1', # 每月一个刻度
  213. showgrid=True, # 显示网格线
  214. ),
  215. zaxis=dict(
  216. title='扭矩',
  217. dtick=self.axisStepGeneratorTorque,
  218. range=[self.axisLowerLimitGeneratorTorque,
  219. self.axisUpperLimitGeneratorTorque],
  220. showgrid=True, # 显示网格线
  221. )
  222. ),
  223. scene_camera=dict(
  224. up=dict(x=0, y=0, z=1), # 保持相机向上方向不变
  225. center=dict(x=0, y=0, z=0), # 保持相机中心位置不变
  226. eye=dict(x=-1.8, y=-1.8, z=1.2) # 调整eye属性以实现水平旋转180°
  227. ),
  228. # 设置图例标题
  229. # legend_title_text='Time',
  230. legend=dict(
  231. orientation="h",
  232. itemsizing="constant", # Use constant size for legend items
  233. itemwidth=80 # Set the width of legend items to 50 pixels
  234. )
  235. )
  236. # 确保从 Series 中提取的是具体的值
  237. engineTypeCode = turbineModelInfo.get(Field_MillTypeCode, "")
  238. if isinstance(engineTypeCode, pd.Series):
  239. engineTypeCode = engineTypeCode.iloc[0]
  240. engineTypeName = turbineModelInfo.get(Field_MachineTypeCode, "")
  241. if isinstance(engineTypeName, pd.Series):
  242. engineTypeName = engineTypeName.iloc[0]
  243. # 构建最终的JSON对象
  244. json_output = {
  245. "analysisTypeCode": "发电机转速和转矩分析",
  246. "engineCode": engineTypeCode,
  247. "engineTypeName": engineTypeName,
  248. "xaixs": "发电机转速(r/min)",
  249. "yaixs": "时间",
  250. "zaixs": "扭矩(N·m)",
  251. "data": [{
  252. "engineName": name[0],
  253. "engineCode": name[1],
  254. "title":f' 月度发电机转速扭矩3D散点图:{name[0]}',
  255. "xData": dataFrame[Field_GeneratorSpeed].tolist(),
  256. "yData":dataFrame[Field_YearMonth].tolist(),
  257. "zData":dataFrame[Field_GeneratorTorque].tolist(),
  258. "color": dataFrame[Field_YearMonth].tolist(),
  259. "mode":'markers'
  260. }]
  261. }
  262. # 保存图像
  263. # outputFileHtml = os.path.join(
  264. # outputAnalysisDir, "{}_3D.html".format(name[0]))
  265. # fig.write_html(outputFileHtml)
  266. result = []
  267. # 将JSON对象保存到文件
  268. output_json_path = os.path.join(outputAnalysisDir, f"3D_{name[0]}.json")
  269. with open(output_json_path, 'w', encoding='utf-8') as f:
  270. import json
  271. json.dump(json_output, f, ensure_ascii=False, indent=4)
  272. # 如果需要返回DataFrame,可以包含文件路径
  273. result.append({
  274. Field_Return_TypeAnalyst: self.typeAnalyst(),
  275. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  276. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  277. Field_CodeOfTurbine: name[1],
  278. Field_Return_FilePath: output_json_path,
  279. Field_Return_IsSaveDatabase: True
  280. })
  281. # result.append({
  282. # Field_Return_TypeAnalyst: self.typeAnalyst(),
  283. # Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  284. # Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  285. # Field_CodeOfTurbine: dataFrame[Field_CodeOfTurbine].iloc[0],
  286. # Field_Return_FilePath: outputFileHtml,
  287. # Field_Return_IsSaveDatabase: True
  288. # })
  289. return result
  290. def drawScatter2DMonthly(self, dataFrameMerge: pd.DataFrame, outputAnalysisDir, conf: Contract,turbineModelInfo: pd.Series):
  291. results = []
  292. grouped = dataFrameMerge.groupby(
  293. [Field_NameOfTurbine, Field_CodeOfTurbine])
  294. for name, group in grouped:
  295. result = self.drawScatter2DMonthlyOfTurbine(
  296. group,turbineModelInfo, outputAnalysisDir, conf, name)
  297. results.extend(result)
  298. return results
  299. def drawScatterGraph(self, dataFrame: pd.DataFrame, outputAnalysisDir, conf: Contract,turbineModelInfo: pd.Series):
  300. """
  301. 绘制风速-功率分布图并保存为文件。
  302. 参数:
  303. dataFrameMerge (pd.DataFrame): 包含数据的DataFrame,需要包含设备名、风速和功率列。
  304. outputAnalysisDir (str): 分析输出目录。
  305. confData (Contract): 配置
  306. """
  307. results = []
  308. dataFrame = dataFrame[(dataFrame[Field_GeneratorTorque] > 0)].sort_values(
  309. by=Field_YearMonth)
  310. grouped = dataFrame.groupby(
  311. [Field_NameOfTurbine, Field_CodeOfTurbine])
  312. # 遍历每个设备的数据
  313. for name, group in grouped:
  314. if len(group[Field_YearMonth].unique()) > 1:
  315. result = self.drawScatterGraphOfTurbine(
  316. group,turbineModelInfo, outputAnalysisDir, conf, name)
  317. results.extend(result)
  318. return results
  319. def drawScatterGraphForTurbines(self, dataFrame: pd.DataFrame, outputAnalysisDir, conf: Contract, turbineModelInfo: pd.Series):
  320. """
  321. 绘制风速-功率分布图并保存为文件。
  322. 参数:
  323. dataFrameMerge (pd.DataFrame): 包含数据的DataFrame,需要包含设备名、风速和功率列。
  324. outputAnalysisDir (str): 分析输出目录。
  325. confData (Contract): 配置
  326. """
  327. dataFrame = dataFrame[(dataFrame[Field_GeneratorTorque] > 0)].sort_values(
  328. by=Field_NameOfTurbine)
  329. # 创建3D散点图
  330. fig = px.scatter_3d(dataFrame,
  331. x=Field_GeneratorSpeed,
  332. y=Field_NameOfTurbine,
  333. z=Field_GeneratorTorque,
  334. color=Field_NameOfTurbine,
  335. labels={Field_GeneratorSpeed: '发电机转速',
  336. Field_NameOfTurbine: '机组', Field_GeneratorTorque: '实际扭矩'}
  337. )
  338. # 设置固定散点大小
  339. fig.update_traces(marker=dict(size=1.5))
  340. # 更新图形的布局
  341. fig.update_layout(
  342. title={
  343. "text": f'发电机转速扭矩3D散点图-{turbineModelInfo[Field_MachineTypeCode]}',
  344. "x": 0.5
  345. },
  346. scene=dict(
  347. xaxis=dict(
  348. title='发电机转速',
  349. dtick=self.axisStepGeneratorSpeed, # 设置y轴刻度间隔
  350. range=[self.axisLowerLimitGeneratorSpeed,
  351. self.axisUpperLimitGeneratorSpeed], # 设置y轴的范围
  352. showgrid=True, # 显示网格线
  353. ),
  354. yaxis=dict(
  355. title='机组',
  356. showgrid=True, # 显示网格线
  357. ),
  358. zaxis=dict(
  359. title='实际扭矩',
  360. dtick=self.axisStepGeneratorTorque,
  361. range=[self.axisLowerLimitGeneratorTorque,
  362. self.axisUpperLimitGeneratorTorque],
  363. )
  364. ),
  365. scene_camera=dict(
  366. up=dict(x=0, y=0, z=1), # 保持相机向上方向不变
  367. center=dict(x=0, y=0, z=0), # 保持相机中心位置不变
  368. eye=dict(x=-1.8, y=-1.8, z=1.2) # 调整eye属性以实现水平旋转180°
  369. ),
  370. # 设置图例标题
  371. # legend_title_text='Turbine',
  372. # margin=dict(t=50, b=10) # t为顶部(top)间距,b为底部(bottom)间距
  373. legend=dict(
  374. orientation="h",
  375. itemsizing="constant", # Use constant size for legend items
  376. itemwidth=80 # Set the width of legend items to 50 pixels
  377. )
  378. )
  379. # 确保从 Series 中提取的是具体的值
  380. engineTypeCode = turbineModelInfo.get(Field_MillTypeCode, "")
  381. if isinstance(engineTypeCode, pd.Series):
  382. engineTypeCode = engineTypeCode.iloc[0]
  383. engineTypeName = turbineModelInfo.get(Field_MachineTypeCode, "")
  384. if isinstance(engineTypeName, pd.Series):
  385. engineTypeName = engineTypeName.iloc[0]
  386. # 构建最终的JSON对象
  387. json_output = {
  388. "analysisTypeCode": "发电机转速和转矩分析",
  389. "engineCode": engineTypeCode,
  390. "engineTypeName": engineTypeName,
  391. "xaixs": "发电机转速(r/min)",
  392. "yaixs": "机组",
  393. "zaixs": "实际扭矩(N·m)",
  394. "data": [{
  395. "title":f' 发电机转速扭矩3D散点图-{turbineModelInfo[Field_MachineTypeCode]}',
  396. "xData": dataFrame[Field_GeneratorSpeed].tolist(),
  397. "yData":dataFrame[Field_NameOfTurbine].tolist(),
  398. "zData":dataFrame[Field_GeneratorTorque].tolist(),
  399. "color": dataFrame[Field_NameOfTurbine].tolist(),
  400. "mode":'markers'
  401. }]
  402. }
  403. # # 保存图像
  404. # outputFileHtml = os.path.join(
  405. # outputAnalysisDir, "{}-{}.html".format(self.typeAnalyst(),turbineModelInfo[Field_MillTypeCode]))
  406. # fig.write_html(outputFileHtml)
  407. result = []
  408. # 将JSON对象保存到文件
  409. output_json_path = os.path.join(outputAnalysisDir, f"total_3D_{turbineModelInfo[Field_MillTypeCode]}.json")
  410. with open(output_json_path, 'w', encoding='utf-8') as f:
  411. import json
  412. json.dump(json_output, f, ensure_ascii=False, indent=4)
  413. # 如果需要返回DataFrame,可以包含文件路径
  414. result.append({
  415. Field_Return_TypeAnalyst: self.typeAnalyst(),
  416. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  417. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  418. Field_CodeOfTurbine:Const_Output_Total,
  419. Field_MillTypeCode:turbineModelInfo[Field_MillTypeCode],
  420. Field_Return_FilePath: output_json_path,
  421. Field_Return_IsSaveDatabase: True
  422. })
  423. # result.append({
  424. # Field_Return_TypeAnalyst: self.typeAnalyst(),
  425. # Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  426. # Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  427. # Field_CodeOfTurbine: Const_Output_Total,
  428. # Field_Return_FilePath: outputFileHtml,
  429. # Field_Return_IsSaveDatabase: True
  430. # })
  431. return result