cpAnalyst.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339
  1. import os
  2. import pandas as pd
  3. import plotly.graph_objects as go
  4. from algorithmContract.confBusiness import *
  5. from algorithmContract.contract import Contract
  6. from behavior.analystWithGoodPoint import AnalystWithGoodPoint
  7. from plotly.subplots import make_subplotscd
  8. class CpAnalyst(AnalystWithGoodPoint):
  9. """
  10. 风电机组风能利用系数分析
  11. """
  12. def typeAnalyst(self):
  13. return "cp"
  14. def turbinesAnalysis(self, outputAnalysisDir, conf: Contract, turbineCodes):
  15. dictionary = self.processTurbineData(turbineCodes, conf, [
  16. Field_DeviceCode, Field_Time, Field_WindSpeed, Field_ActiverPower])
  17. dataFrameOfTurbines = self.userDataFrame(
  18. dictionary, conf.dataContract.configAnalysis, self)
  19. # 检查所需列是否存在
  20. required_columns = {Field_WindSpeed,
  21. Field_Cp, Field_PowerFloor}
  22. if not required_columns.issubset(dataFrameOfTurbines.columns):
  23. raise ValueError(f"DataFrame缺少必要的列。需要的列有: {required_columns}")
  24. turbrineInfos = self.common.getTurbineInfos(
  25. conf.dataContract.dataFilter.powerFarmID, turbineCodes, self.turbineInfo)
  26. groupedOfTurbineModel = turbrineInfos.groupby(Field_MillTypeCode)
  27. returnDatas = []
  28. for turbineModelCode, group in groupedOfTurbineModel:
  29. currTurbineCodes = group[Field_CodeOfTurbine].unique().tolist()
  30. currTurbineModeInfo = self.common.getTurbineModelByCode(
  31. turbineModelCode, self.turbineModelInfo)
  32. dataFrameOfContractPowerCurve = self.dataFrameContractOfTurbine[
  33. self.dataFrameContractOfTurbine[Field_MillTypeCode] == turbineModelCode]
  34. currDataFrameOfTurbines = dataFrameOfTurbines[dataFrameOfTurbines[Field_CodeOfTurbine].isin(
  35. currTurbineCodes)]
  36. returnData = self.drawLineGraphForTurbine(
  37. currDataFrameOfTurbines, outputAnalysisDir, conf, currTurbineModeInfo,dataFrameOfContractPowerCurve)
  38. returnDatas.append(returnData)
  39. returnResult = pd.concat(returnDatas, ignore_index=True)
  40. return returnResult
  41. def drawLineGraphForTurbine(self, dataFrameOfTurbines: pd.DataFrame, outputAnalysisDir, conf: Contract, turbineModelInfo: pd.Series,dataFrameOfContractPowerCurve:pd.DataFrame):
  42. upLimitOfPower = self.turbineInfo[Field_RatedPower].max() * 0.9
  43. grouped = dataFrameOfTurbines.groupby([Field_CodeOfTurbine, Field_PowerFloor]).agg(
  44. cp=('cp', 'median'),
  45. cp_max=('cp', 'max'),
  46. cp_min=('cp', 'min'),
  47. ).reset_index()
  48. # Rename columns post aggregation for clarity
  49. grouped.columns = [Field_CodeOfTurbine,
  50. Field_PowerFloor, Field_CpMedian, 'cp_max', 'cp_min']
  51. # Sort by power_floor
  52. grouped = grouped.sort_values(
  53. by=[Field_CodeOfTurbine, Field_PowerFloor])
  54. # Create Subplots
  55. fig = make_subplots(specs=[[{"secondary_y": False}]])
  56. # 创建一个列表来存储各个风电机组的数据
  57. turbine_data_list = []
  58. # colors = px.colors.sequential.Turbo
  59. # Plotting the turbine lines
  60. for turbineCode in grouped[Field_CodeOfTurbine].unique():
  61. turbine_data = grouped[grouped[Field_CodeOfTurbine] == turbineCode]
  62. currTurbineInfo = self.common.getTurbineInfo(
  63. conf.dataContract.dataFilter.powerFarmID, turbineCode, self.turbineInfo)
  64. fig.add_trace(
  65. go.Scatter(x=turbine_data[Field_PowerFloor],
  66. y=turbine_data[Field_CpMedian],
  67. mode='lines',
  68. # line=dict(color=colors[idx % len(colors)]),
  69. name=currTurbineInfo[Field_NameOfTurbine])
  70. )
  71. # 提取数据
  72. turbine_data_total = {
  73. "engineName": currTurbineInfo[Field_NameOfTurbine],
  74. "engineCode": turbineCode,
  75. "xData": turbine_data[Field_PowerFloor].tolist(),
  76. "yData": turbine_data[Field_CpMedian].tolist(),
  77. }
  78. turbine_data_list.append(turbine_data_total)
  79. # Plotting the contract guarantee Cp curve
  80. fig.add_trace(
  81. go.Scatter(x=dataFrameOfContractPowerCurve[Field_PowerFloor],
  82. y=dataFrameOfContractPowerCurve[Field_Cp],
  83. # mode='lines',
  84. # line=dict(color='red', dash='dash'),
  85. mode='lines+markers',
  86. line=dict(color='red'),
  87. marker=dict(color='red', size=5),
  88. name='合同功率曲线'
  89. ),
  90. secondary_y=False,
  91. )
  92. # Update layout
  93. fig.update_layout(
  94. title={
  95. 'text': f'风能利用系数分布-{turbineModelInfo[Field_MachineTypeCode]}',
  96. 'x': 0.5, # 标题位置居中
  97. },
  98. xaxis_title='功率',
  99. yaxis_title='风能利用系数',
  100. # legend_title='Turbine',
  101. xaxis=dict(range=[0, upLimitOfPower], tickangle=-45),
  102. yaxis=dict(
  103. dtick=self.axisStepCp,
  104. range=[self.axisLowerLimitCp,
  105. self.axisUpperLimitCp]
  106. ),
  107. legend=dict(
  108. orientation="h", # Horizontal orientation
  109. xanchor="center", # Anchor the legend to the center
  110. x=0.5, # Position legend at the center of the x-axis
  111. y=-0.2, # Position legend below the x-axis
  112. # itemsizing='constant', # Keep the size of the legend entries constant
  113. # itemwidth=50
  114. )
  115. )
  116. engineTypeCode = turbineModelInfo.get(Field_MillTypeCode, "")
  117. if isinstance(engineTypeCode, pd.Series):
  118. engineTypeCode = engineTypeCode.iloc[0]
  119. engineTypeName = turbineModelInfo.get(Field_MachineTypeCode, "")
  120. if isinstance(engineTypeName, pd.Series):
  121. engineTypeName = engineTypeName.iloc[0]
  122. # 构建最终的JSON对象
  123. json_output = {
  124. "analysisTypeCode": "风电机组风能利用系数分析",
  125. "typecode": turbineModelInfo[Field_MillTypeCode],
  126. "engineCode": engineTypeCode,
  127. "engineTypeName": engineTypeName,
  128. "title": f'风能利用系数分布-{turbineModelInfo[Field_MachineTypeCode]}',
  129. "xaixs": "功率(kW)",
  130. "yaixs": "风能利用系数",
  131. "contract_Cp_curve_xData": dataFrameOfContractPowerCurve[Field_PowerFloor].tolist(),
  132. "contract_Cp_curve_yData": dataFrameOfContractPowerCurve[Field_Cp].tolist(),
  133. "data": turbine_data_list
  134. }
  135. # 将JSON对象保存到文件
  136. output_json_path = os.path.join(outputAnalysisDir, f"{turbineModelInfo[Field_MillTypeCode]}.json")
  137. with open(output_json_path, 'w', encoding='utf-8') as f:
  138. import json
  139. json.dump(json_output, f, ensure_ascii=False, indent=4)
  140. # 保存html
  141. # htmlFileName = f"{self.powerFarmInfo[Field_PowerFarmName].iloc[0]}-{turbineModelInfo[Field_MillTypeCode]}-Cp-Distribution.html"
  142. # htmlFilePath = os.path.join(outputAnalysisDir, htmlFileName)
  143. # fig.write_html(htmlFilePath)
  144. result_rows = []
  145. # result_rows.append({
  146. # Field_Return_TypeAnalyst: self.typeAnalyst(),
  147. # Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  148. # Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  149. # Field_CodeOfTurbine: Const_Output_Total,
  150. # Field_Return_FilePath: htmlFilePath,
  151. # Field_Return_IsSaveDatabase: True
  152. # })
  153. # 如果需要返回DataFrame,可以包含文件路径
  154. result_rows.append({
  155. Field_Return_TypeAnalyst: self.typeAnalyst(),
  156. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  157. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  158. Field_CodeOfTurbine: 'total',
  159. Field_MillTypeCode: turbineModelInfo[Field_MillTypeCode],
  160. Field_Return_FilePath: output_json_path,
  161. Field_Return_IsSaveDatabase: True
  162. })
  163. # Individual turbine graphs
  164. for turbineCode, group in grouped.groupby(Field_CodeOfTurbine):
  165. fig = go.Figure()
  166. currTurbineInfo = self.common.getTurbineInfo(
  167. conf.dataContract.dataFilter.powerFarmID, turbineCode, self.turbineInfo)
  168. # 创建一个列表来存储各个风电机组的数据
  169. turbine_data_list_each = []
  170. # Flag to add legend only once
  171. # add_legend = True
  172. # Plot other turbines data
  173. for other_name, other_group in grouped[grouped[Field_CodeOfTurbine] != turbineCode].groupby(Field_CodeOfTurbine):
  174. tempTurbineInfo = self.common.getTurbineInfo(
  175. conf.dataContract.dataFilter.powerFarmID, other_name, self.turbineInfo)
  176. fig.add_trace(
  177. go.Scatter(
  178. x=other_group[Field_PowerFloor],
  179. y=other_group[Field_CpMedian],
  180. mode='lines',
  181. # name='Other Turbines' if add_legend else '',
  182. line=dict(color='lightgray', width=1),
  183. showlegend=False
  184. )
  185. )
  186. # 提取数据
  187. turbine_data_other_each = {
  188. "engineName": tempTurbineInfo[Field_NameOfTurbine],
  189. "engineCode": other_name,
  190. "xData": other_group[Field_PowerFloor].tolist(),
  191. "yData": other_group[Field_CpMedian].tolist(),
  192. }
  193. turbine_data_list_each.append(turbine_data_other_each)
  194. add_legend = False # Only add legend item for the first other turbine
  195. # Add trace for the current turbine
  196. fig.add_trace(
  197. go.Scatter(x=group[Field_PowerFloor], y=group[Field_CpMedian],
  198. mode='lines', name=currTurbineInfo[Field_NameOfTurbine], line=dict(color='darkblue'))
  199. )
  200. turbine_data_curr = {
  201. "engineName": currTurbineInfo[Field_NameOfTurbine],
  202. "engineCode": currTurbineInfo[Field_CodeOfTurbine],
  203. "xData": group[Field_PowerFloor].tolist(),
  204. "yData": group[Field_CpMedian].tolist(),
  205. }
  206. turbine_data_list_each.append(turbine_data_curr)
  207. fig.add_trace(
  208. go.Scatter(x=dataFrameOfContractPowerCurve[Field_PowerFloor],
  209. y=dataFrameOfContractPowerCurve[Field_Cp],
  210. mode='lines+markers',
  211. name='合同功率曲线',
  212. marker=dict(color='red', size=5),
  213. line=dict(color='red'))
  214. )
  215. fig.update_layout(
  216. title={
  217. 'text': f'机组: {currTurbineInfo[Field_NameOfTurbine]}',
  218. # 'x': 0.5, # 标题位置居中
  219. },
  220. xaxis_title='功率',
  221. yaxis_title='风能利用系数',
  222. xaxis=dict(range=[0, upLimitOfPower], tickangle=-45),
  223. yaxis=dict(
  224. dtick=self.axisStepCp,
  225. range=[self.axisLowerLimitCp,
  226. self.axisUpperLimitCp] # axisStepCp
  227. ),
  228. legend=dict(x=1.05, y=0.5)
  229. )
  230. engineTypeCode = turbineModelInfo.get(Field_MillTypeCode, "")
  231. if isinstance(engineTypeCode, pd.Series):
  232. engineTypeCode = engineTypeCode.iloc[0]
  233. engineTypeName = turbineModelInfo.get(Field_MachineTypeCode, "")
  234. if isinstance(engineTypeName, pd.Series):
  235. engineTypeName = engineTypeName.iloc[0]
  236. # 构建最终的JSON对象
  237. json_output = {
  238. "analysisTypeCode": "风电机组风能利用系数分析",
  239. "typecode": turbineModelInfo[Field_MillTypeCode],
  240. "engineCode": engineTypeCode,
  241. "engineTypeName": engineTypeName,
  242. "title": f'机组: {currTurbineInfo[Field_NameOfTurbine]}',
  243. "xaixs": "功率(kW)",
  244. "yaixs": "风能利用系数",
  245. "contract_Cp_curve_xData": dataFrameOfContractPowerCurve[Field_PowerFloor].tolist(),
  246. "contract_Cp_curve_yData": dataFrameOfContractPowerCurve[Field_Cp].tolist(),
  247. "data": turbine_data_list_each
  248. }
  249. # 将JSON对象保存到文件
  250. output_json_path_each = os.path.join(outputAnalysisDir,
  251. f"{currTurbineInfo[Field_NameOfTurbine]}.json")
  252. with open(output_json_path_each, 'w', encoding='utf-8') as f:
  253. import json
  254. json.dump(json_output, f, ensure_ascii=False, indent=4)
  255. # 保存图像
  256. pngFileName = f"{currTurbineInfo[Field_NameOfTurbine]}.png"
  257. pngFilePath = os.path.join(outputAnalysisDir, pngFileName)
  258. fig.write_image(pngFilePath, scale=3)
  259. # 保存HTML
  260. # htmlFileName = f"{currTurbineInfo[Field_NameOfTurbine]}.html"
  261. # htmlFilePath = os.path.join(outputAnalysisDir, htmlFileName)
  262. # fig.write_html(htmlFilePath)
  263. result_rows.append({
  264. Field_Return_TypeAnalyst: self.typeAnalyst(),
  265. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  266. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  267. Field_CodeOfTurbine: turbineCode,
  268. Field_Return_FilePath: pngFilePath,
  269. Field_Return_IsSaveDatabase: False
  270. })
  271. # 如果需要返回DataFrame,可以包含文件路径
  272. result_rows.append({
  273. Field_Return_TypeAnalyst: self.typeAnalyst(),
  274. Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  275. Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  276. Field_CodeOfTurbine: turbineCode,
  277. Field_Return_FilePath: output_json_path_each,
  278. Field_Return_IsSaveDatabase: True
  279. })
  280. # result_rows.append({
  281. # Field_Return_TypeAnalyst: self.typeAnalyst(),
  282. # Field_PowerFarmCode: conf.dataContract.dataFilter.powerFarmID,
  283. # Field_Return_BatchCode: conf.dataContract.dataFilter.dataBatchNum,
  284. # Field_CodeOfTurbine: turbineCode,
  285. # Field_Return_FilePath: htmlFilePath,
  286. # Field_Return_IsSaveDatabase: True
  287. # })
  288. result_df = pd.DataFrame(result_rows)
  289. return result_df