|
@@ -1,386 +0,0 @@
|
|
|
-import os
|
|
|
-
|
|
|
-import numpy as np
|
|
|
-from pandas import DataFrame
|
|
|
-
|
|
|
-from utils.draw.draw_file import scatter
|
|
|
-from utils.file.trans_methods import read_file_to_df
|
|
|
-
|
|
|
-
|
|
|
-class ClassIdentifier(object):
|
|
|
-
|
|
|
- def __init__(self, wind_turbine_number, file_path: str = None, origin_df: DataFrame = None,
|
|
|
- wind_velocity='wind_velocity',
|
|
|
- active_power='active_power',
|
|
|
- pitch_angle_blade='pitch_angle_blade_1',
|
|
|
- rated_power=1500):
|
|
|
- """
|
|
|
- :param wind_turbine_number: The wind turbine number.
|
|
|
- :param file_path: The file path of the input data.
|
|
|
- :param origin_df: The pandas DataFrame containing the input data.
|
|
|
- :param wind_velocity: 风速字段
|
|
|
- :param active_power: 有功功率字段
|
|
|
- :param pitch_angle_blade: 桨距角
|
|
|
- :param rated_power: 额定功率
|
|
|
- """
|
|
|
- self.wind_turbine_number = wind_turbine_number
|
|
|
- self.wind_velocity = wind_velocity
|
|
|
- self.active_power = active_power
|
|
|
- self.pitch_angle_blade = pitch_angle_blade
|
|
|
- self.rated_power = rated_power # 额定功率1500kw,可改为2000kw
|
|
|
-
|
|
|
- if file_path is None and origin_df is None:
|
|
|
- raise ValueError("Either file_path or origin_df should be provided.")
|
|
|
-
|
|
|
- if file_path:
|
|
|
- self.df = read_file_to_df(file_path)
|
|
|
- else:
|
|
|
- self.df = origin_df
|
|
|
-
|
|
|
- def identifier(self):
|
|
|
- # 风速 和 有功功率 df
|
|
|
- wind_and_power_df = self.df[[self.wind_velocity, self.active_power, "pitch_angle_blade_1"]]
|
|
|
- wind_and_power_df.reset_index(inplace=True)
|
|
|
- wind_and_power_df_count = wind_and_power_df.shape[0]
|
|
|
- power_max = wind_and_power_df[self.active_power].max()
|
|
|
- power_rated = np.ceil(power_max / 100) * 100
|
|
|
- v_cut_out = 25
|
|
|
- # 网格法确定风速风向分区数量,功率方向分区数量,
|
|
|
- p_num = int(np.ceil(power_rated / 25)) # 功率分区间隔25kW
|
|
|
- v_num = int(np.ceil(v_cut_out / 0.25)) # 风速分区间隔0.25m/s
|
|
|
-
|
|
|
- # 存储功率大于零的运行数据
|
|
|
- dz_march = np.zeros([wind_and_power_df_count, 2], dtype=float)
|
|
|
- n_counter1 = 0
|
|
|
- for i in range(wind_and_power_df_count):
|
|
|
- if wind_and_power_df.loc[i, self.active_power] > 0:
|
|
|
- dz_march[n_counter1, 0] = wind_and_power_df.loc[i, self.wind_velocity]
|
|
|
- dz_march[n_counter1, 1] = wind_and_power_df.loc[i, self.active_power]
|
|
|
-
|
|
|
- n_counter1 = n_counter1 + 1
|
|
|
-
|
|
|
- # 统计各网格落入的散点个数
|
|
|
- if v_num == 1:
|
|
|
- x_box_number = np.ones([p_num], dtype=int)
|
|
|
- else:
|
|
|
- x_box_number = np.ones([p_num, v_num], dtype=int)
|
|
|
- n_which_p = -1
|
|
|
- n_which_v = -1
|
|
|
- for i in range(n_counter1):
|
|
|
- for m in range(p_num):
|
|
|
- if m * 25 < dz_march[i, 1] <= (m + 1) * 25:
|
|
|
- n_which_p = m
|
|
|
- break
|
|
|
- for n in range(v_num):
|
|
|
- if ((n + 1) * 0.25 - 0.125) < dz_march[i, 0] <= ((n + 1) * 0.25 + 0.125):
|
|
|
- n_which_v = n
|
|
|
- break
|
|
|
-
|
|
|
- if n_which_p > -1 and n_which_v > -1:
|
|
|
- x_box_number[n_which_p, n_which_v] = x_box_number[n_which_p, n_which_v] + 1
|
|
|
-
|
|
|
- for m in range(p_num):
|
|
|
- for n in range(v_num):
|
|
|
- x_box_number[m, n] = x_box_number[m, n] - 1
|
|
|
-
|
|
|
- # 在功率方向将网格内散点绝对个数转换为相对百分比,备用
|
|
|
- p_box_percent = np.zeros([p_num, v_num], dtype=float)
|
|
|
- p_bin_sum = np.zeros(p_num, dtype=int)
|
|
|
-
|
|
|
- for i in range(p_num):
|
|
|
- for m in range(v_num):
|
|
|
- p_bin_sum[i] = p_bin_sum[i] + x_box_number[i, m]
|
|
|
-
|
|
|
- for m in range(v_num):
|
|
|
- if p_bin_sum[i] > 0:
|
|
|
- p_box_percent[i, m] = x_box_number[i, m] / p_bin_sum[i] * 100
|
|
|
-
|
|
|
- # 在风速方向将网格内散点绝对个数转换为相对百分比,备用
|
|
|
- v_box_percent = np.zeros([p_num, v_num], dtype=float)
|
|
|
- v_bin_sum = np.zeros(v_num, dtype=int)
|
|
|
-
|
|
|
- for i in range(v_num):
|
|
|
- for m in range(p_num):
|
|
|
- v_bin_sum[i] = v_bin_sum[i] + x_box_number[m, i]
|
|
|
-
|
|
|
- for m in range(p_num):
|
|
|
- if v_bin_sum[i] > 0:
|
|
|
- v_box_percent[m, i] = x_box_number[m, i] / v_bin_sum[i] * 100
|
|
|
-
|
|
|
- # 以水平功率带方向为准,分析每个水平功率带中,功率主带中心,即找百分比最大的网格位置。
|
|
|
- p_box_max_index = np.zeros(p_num, dtype=int) # 水平功率带最大网格位置索引
|
|
|
- p_box_max_p = np.zeros(p_num, dtype=int) # 水平功率带最大网格百分比
|
|
|
-
|
|
|
- for m in range(p_num):
|
|
|
- # 确定每一水平功率带的最大网格位置索引即百分比值
|
|
|
- p_box_max_p[m], p_box_max_index[m] = p_box_percent[m, :].max(), p_box_percent[m, :].argmax()
|
|
|
-
|
|
|
- # 以垂直风速方向为准,分析每个垂直风速带中,功率主带中心,即找百分比最大的网格位置。
|
|
|
- v_box_max_index = np.zeros(v_num, dtype=int)
|
|
|
- v_box_max_v = np.zeros(v_num, dtype=int)
|
|
|
-
|
|
|
- for m in range(v_num):
|
|
|
- [v_box_max_v[m], v_box_max_index[m]] = v_box_percent[:, m].max(), v_box_percent[:, m].argmax()
|
|
|
-
|
|
|
- # 切入风速特殊处理,如果切入风速过于偏右,向左拉回
|
|
|
- if p_box_max_index[0] > 14:
|
|
|
- p_box_max_index[0] = 9
|
|
|
-
|
|
|
- # 以水平功率带方向为基准,进行分析
|
|
|
- dot_dense = np.zeros(p_num, dtype=int) # 每一水平功率带的功率主带包含的网格数
|
|
|
- dot_dense_left_right = np.zeros([p_num, 2], dtype=int) # 存储每一水平功率带的功率主带以最大网格为中心,向向左,向右扩展的网格数
|
|
|
- dot_valve = 90 # 从中心向左右对称扩展网格的散点百分比和的阈值。
|
|
|
-
|
|
|
- for i in range(p_num - 6): # 从最下层水平功率带1开始,向上到第PNum-6个水平功率带(额定功率一下水平功率带),逐一分析
|
|
|
- p_dot_dense_sum = p_box_max_p[i] # 以中心最大水平功率带为基准,向左向右对称扩展网格,累加各网格散点百分比
|
|
|
- i_spread_right = 1
|
|
|
- i_spread_left = 1
|
|
|
- while p_dot_dense_sum < dot_valve:
|
|
|
-
|
|
|
- if (p_box_max_index[i] + i_spread_right) < v_num - 1:
|
|
|
- p_dot_dense_sum = p_dot_dense_sum + p_box_percent[i, p_box_max_index[i] + i_spread_right] # 向右侧扩展
|
|
|
- i_spread_right = i_spread_right + 1
|
|
|
-
|
|
|
- if (p_box_max_index[i] + i_spread_right) > v_num - 1:
|
|
|
- break
|
|
|
-
|
|
|
- if (p_box_max_index[i] - i_spread_left) > 0:
|
|
|
- p_dot_dense_sum = p_dot_dense_sum + p_box_percent[i, p_box_max_index[i] - i_spread_left] # 向左侧扩展
|
|
|
- i_spread_left = i_spread_left + 1
|
|
|
-
|
|
|
- if (p_box_max_index[i] - i_spread_left) <= 0:
|
|
|
- break
|
|
|
-
|
|
|
- i_spread_right = i_spread_right - 1
|
|
|
- i_spread_left = i_spread_left - 1
|
|
|
- # 向左右对称扩展完毕
|
|
|
-
|
|
|
- dot_dense_left_right[i, 0] = i_spread_left
|
|
|
- dot_dense_left_right[i, 1] = i_spread_right
|
|
|
- dot_dense[i] = i_spread_left + i_spread_right + 1
|
|
|
-
|
|
|
- # 各行功率主带右侧宽度的中位数最具有代表性
|
|
|
- dot_dense_width_left = np.zeros([p_num - 6, 1], dtype=int)
|
|
|
- for i in range(p_num - 6):
|
|
|
- dot_dense_width_left[i] = dot_dense_left_right[i, 1]
|
|
|
-
|
|
|
- main_band_right = np.median(dot_dense_width_left)
|
|
|
-
|
|
|
- # 散点向右显著延展分布的水平功率带为限功率水平带
|
|
|
- power_limit = np.zeros([p_num, 1], dtype=int) # 各水平功率带是否为限功率标识,==1:是;==0:不是
|
|
|
- width_average = 0 # 功率主带平均宽度
|
|
|
- width_var = 0 # 功率主带方差
|
|
|
- # power_limit_valve = 6 #限功率主带判别阈值
|
|
|
- power_limit_valve = np.ceil(main_band_right) + 3 # 限功率主带判别阈值
|
|
|
-
|
|
|
- n_counter_limit = 0
|
|
|
- n_counter = 0
|
|
|
-
|
|
|
- for i in range(p_num - 6):
|
|
|
- if dot_dense_left_right[i, 1] > power_limit_valve and p_bin_sum[i] > 20: # 如果向右扩展网格数大于阈值,且该水平功率带点总数>20,是
|
|
|
- power_limit[i] = 1
|
|
|
- n_counter_limit = n_counter_limit + 1
|
|
|
-
|
|
|
- if dot_dense_left_right[i, 1] <= power_limit_valve:
|
|
|
- width_average = width_average + dot_dense_left_right[i, 1] # 统计正常水平功率带右侧宽度
|
|
|
- n_counter = n_counter + 1
|
|
|
-
|
|
|
- width_average = width_average / n_counter # 功率主带平均宽度
|
|
|
-
|
|
|
- # 各水平功率带的功率主带宽度的方差,反映从下到上宽度是否一致,或是否下宽上窄等异常情况
|
|
|
- for i in range(p_num - 6):
|
|
|
- if dot_dense_left_right[i, 1] <= power_limit_valve:
|
|
|
- width_var = width_var + (dot_dense_left_right[i, 1] - width_average) * (
|
|
|
- dot_dense_left_right[i, 1] - width_average)
|
|
|
-
|
|
|
- # 对限负荷水平功率带的最大网格较下面相邻层显著偏右,拉回
|
|
|
- for i in range(1, p_num - 6):
|
|
|
- if power_limit[i] == 1 and abs(p_box_max_index[i] - p_box_max_index[i - 1]) > 5:
|
|
|
- p_box_max_index[i] = p_box_max_index[i - 1] + 1
|
|
|
-
|
|
|
- # 输出各层功率主带的左右边界网格索引
|
|
|
- dot_dense_inverse = np.zeros([p_num, 2], dtype=int)
|
|
|
-
|
|
|
- for i in range(p_num):
|
|
|
- dot_dense_inverse[i, :] = dot_dense_left_right[p_num - i - 1, :]
|
|
|
-
|
|
|
- # 功率主带的右边界
|
|
|
- curve_width_r = int(np.ceil(width_average) + 2)
|
|
|
-
|
|
|
- # curve_width_l = 6 #功率主带的左边界
|
|
|
- curve_width_l = curve_width_r
|
|
|
-
|
|
|
- b_box_limit = np.zeros([p_num, v_num], dtype=int) # 网格是否为限功率网格的标识,如果为限功率水平功率带,从功率主带右侧边缘向右的网格为限功率网格
|
|
|
- for i in range(2, p_num - 6):
|
|
|
- if power_limit[i] == 1:
|
|
|
- for j in range(p_box_max_index[i] + curve_width_r, v_num):
|
|
|
- b_box_limit[i, j] = 1
|
|
|
-
|
|
|
- b_box_remove = np.zeros([p_num, v_num], dtype=int) # 数据异常需要剔除的网格标识,标识==1:功率主带右侧的欠发网格;==2:功率主带左侧的超发网格
|
|
|
- for m in range(p_num - 6):
|
|
|
- for n in range(p_box_max_index[m] + curve_width_r, v_num):
|
|
|
- b_box_remove[m, n] = 1
|
|
|
-
|
|
|
- for n in range(p_box_max_index[m] - curve_width_l, -1, -1):
|
|
|
- b_box_remove[m, n] = 2
|
|
|
-
|
|
|
- # 确定功率主带的左上拐点,即额定风速位置的网格索引
|
|
|
- curve_top = np.zeros(2, dtype=int)
|
|
|
- curve_top_valve = 3 # 网格的百分比阈值
|
|
|
- b_top_find = 0
|
|
|
- for m in range(p_num - 4 - 1, -1, -1):
|
|
|
- for n in range(v_num):
|
|
|
- if v_box_percent[m, n] > curve_top_valve and x_box_number[m, n] >= 10: # 如左上角网格的百分比和散点个数大于阈值。
|
|
|
- curve_top[0] = m
|
|
|
- curve_top[1] = n
|
|
|
- b_top_find = 1
|
|
|
- break
|
|
|
-
|
|
|
- if b_top_find == 1:
|
|
|
- break
|
|
|
-
|
|
|
- isolate_valve = 3
|
|
|
- for m in range(p_num - 6):
|
|
|
- for n in range(p_box_max_index[m] + curve_width_r, v_num):
|
|
|
- if p_box_percent[m, n] < isolate_valve:
|
|
|
- b_box_remove[m, n] = 1
|
|
|
-
|
|
|
- # 功率主带顶部宽度
|
|
|
- curve_width_t = 2
|
|
|
- for m in range(p_num - curve_width_t - 1, p_num):
|
|
|
- for n in range(v_num):
|
|
|
- b_box_remove[m, n] = 3 # 网格为额定功率以上的超发点
|
|
|
-
|
|
|
- # 功率主带拐点左侧的欠发网格标识
|
|
|
- for m in range(p_num - 5 - 1, p_num):
|
|
|
- for n in range(curve_top[1] - 1):
|
|
|
- b_box_remove[m, n] = 2
|
|
|
-
|
|
|
- # 以网格的标识,决定该网格内数据的标识。dzwind_and_power_sel。散点在哪个网格,此网格的标识即为该点的标识
|
|
|
- dzwind_and_power_sel = np.zeros(n_counter1, dtype=int) # -1:停机 0:好点 1:欠发功率点;2:超发功率点;3:额定风速以上的超发功率点 4: 限电
|
|
|
- n_which_p = -1
|
|
|
- n_which_v = -1
|
|
|
- n_bad_a = 0
|
|
|
-
|
|
|
- for i in range(n_counter1):
|
|
|
- for m in range(p_num):
|
|
|
- if m * 25 < dz_march[i, 1] <= (m + 1) * 25:
|
|
|
- n_which_p = m
|
|
|
- break
|
|
|
-
|
|
|
- for n in range(v_num):
|
|
|
- if ((n + 1) * 0.25 - 0.125) < dz_march[i, 0] <= ((n + 1) * 0.25 + 0.125):
|
|
|
- n_which_v = n
|
|
|
- break
|
|
|
-
|
|
|
- if n_which_p > -1 and n_which_v > -1:
|
|
|
-
|
|
|
- if b_box_remove[n_which_p, n_which_v] == 1:
|
|
|
- dzwind_and_power_sel[i] = 1
|
|
|
- n_bad_a = n_bad_a + 1
|
|
|
-
|
|
|
- if b_box_remove[n_which_p, n_which_v] == 2:
|
|
|
- dzwind_and_power_sel[i] = 2
|
|
|
-
|
|
|
- if b_box_remove[n_which_p, n_which_v] == 3:
|
|
|
- dzwind_and_power_sel[i] = 0 # 3 # 额定风速以上的超发功率点认为是正常点,不再标识。
|
|
|
-
|
|
|
- # 限负荷数据标识方法2:把数据切割为若干个窗口。对每一窗口,以第一个点为基准,连续nWindowLength个数据的功率在方差范围内,呈现显著水平分布的点
|
|
|
- n_window_length = 3
|
|
|
- limit_window = np.zeros(n_window_length, dtype=float)
|
|
|
- power_std = 15 # 功率波动方差
|
|
|
- n_window_num = int(np.floor(n_counter1 / n_window_length))
|
|
|
- power_limit_up = self.rated_power - 300
|
|
|
- power_limit_low = 200
|
|
|
- for i in range(n_window_num):
|
|
|
- for j in range(n_window_length):
|
|
|
- limit_window[j] = dz_march[i * n_window_length + j, 1]
|
|
|
-
|
|
|
- b_all_in_areas = 1
|
|
|
- for j in range(n_window_length):
|
|
|
- if limit_window[j] < power_limit_low or limit_window[j] > power_limit_up:
|
|
|
- b_all_in_areas = 0
|
|
|
-
|
|
|
- if b_all_in_areas == 0:
|
|
|
- continue
|
|
|
-
|
|
|
- up_limit = limit_window[0] + power_std
|
|
|
- low_limit = limit_window[0] - power_std
|
|
|
- b_all_in_up_low = 1
|
|
|
- for j in range(1, n_window_length):
|
|
|
- if limit_window[j] < low_limit or limit_window[j] > up_limit:
|
|
|
- b_all_in_up_low = 0
|
|
|
-
|
|
|
- if b_all_in_up_low == 1:
|
|
|
- for j in range(n_window_length):
|
|
|
- dzwind_and_power_sel[i * n_window_length + j] = 4 # 标识窗口内的数据为限负荷数据
|
|
|
-
|
|
|
- for i in range(p_num - 6):
|
|
|
- pv_left_down = np.zeros(2, dtype=float)
|
|
|
- pv_right_up = np.zeros(2, dtype=float)
|
|
|
-
|
|
|
- if (p_box_max_index[i + 1] - p_box_max_index[i]) >= 1:
|
|
|
- pv_left_down[0] = (p_box_max_index[i] + 1 + curve_width_r) * 0.25 - 0.125
|
|
|
- pv_left_down[1] = i * 25
|
|
|
-
|
|
|
- pv_right_up[0] = (p_box_max_index[i + 1] + 1 + curve_width_r) * 0.25 - 0.125
|
|
|
- pv_right_up[1] = (i + 1) * 25
|
|
|
-
|
|
|
- for m in range(n_counter1):
|
|
|
- if pv_left_down[0] < dz_march[m, 0] < pv_right_up[0] and pv_left_down[1] < \
|
|
|
- dz_march[m, 1] < pv_right_up[1]: # 在该锯齿中
|
|
|
- if (dz_march[m, 1] - pv_left_down[1]) / (dz_march[m, 0] - pv_left_down[0]) > (
|
|
|
- pv_right_up[1] - pv_left_down[1]) / (
|
|
|
- pv_right_up[0] - pv_left_down[0]): # 斜率大于对角连线,则在锯齿左上三角形中,选中
|
|
|
- dzwind_and_power_sel[m] = 0
|
|
|
-
|
|
|
- wind_and_power_df.loc[:, 'marker'] = -1
|
|
|
- wind_and_power_df.loc[
|
|
|
- wind_and_power_df[wind_and_power_df[self.active_power] > 0].index, 'marker'] = dzwind_and_power_sel
|
|
|
-
|
|
|
- # 把部分欠发的优化为限电
|
|
|
- # 构建条件表达式
|
|
|
- cond1 = (wind_and_power_df['marker'] == 1) & (
|
|
|
- (wind_and_power_df[self.active_power] < self.rated_power * 0.75) &
|
|
|
- (wind_and_power_df[self.pitch_angle_blade] > 0.5)
|
|
|
- )
|
|
|
- cond2 = (wind_and_power_df['marker'] == 1) & (
|
|
|
- (wind_and_power_df[self.active_power] < self.rated_power * 0.85) &
|
|
|
- (wind_and_power_df[self.pitch_angle_blade] > 1.5)
|
|
|
- )
|
|
|
- cond3 = (wind_and_power_df['marker'] == 1) & (
|
|
|
- (wind_and_power_df[self.active_power] < self.rated_power * 0.9) &
|
|
|
- (wind_and_power_df[self.pitch_angle_blade] > 2.5)
|
|
|
- )
|
|
|
-
|
|
|
- # 使用逻辑或操作符|合并条件
|
|
|
- combined_condition = cond1 | cond2 | cond3
|
|
|
- wind_and_power_df.loc[combined_condition, 'marker'] = 4
|
|
|
-
|
|
|
- return wind_and_power_df
|
|
|
-
|
|
|
- def run(self):
|
|
|
- # Implement your class identification logic here
|
|
|
- return self.identifier()
|
|
|
-
|
|
|
-
|
|
|
-if __name__ == '__main__':
|
|
|
- test = ClassIdentifier('test', r"D:\中能智能\matlib计算相关\好点坏点matlib计算\WOG00436.csv",
|
|
|
- wind_velocity='wind_velocity',
|
|
|
- active_power='active_power',
|
|
|
- pitch_angle_blade='pitch_angle_blade_1',
|
|
|
- rated_power=1500
|
|
|
- )
|
|
|
-
|
|
|
- df = test.run()
|
|
|
-
|
|
|
- df.to_csv("tet.csv", encoding="utf8")
|
|
|
-
|
|
|
- color_map = {-1: 'red', 0: 'green', 1: 'blue', 2: 'black', 3: 'orange', 4: 'magenta'}
|
|
|
- c = df['marker'].map(color_map)
|
|
|
-
|
|
|
- # -1:停机 0:好点 1:欠发功率点;2:超发功率点;3:额定风速以上的超发功率点 4: 限电
|
|
|
- legend_map = {"停机": 'red', "好点": 'green', "欠发": 'blue', "超发": 'black', "额定风速以上的超发": 'orange', "限电": 'magenta'}
|
|
|
- scatter("测试matlab结果", x_label='风速', y_label='有功功率', x_values=df[test.wind_velocity].values,
|
|
|
- y_values=df[test.active_power].values, color=c, col_map=legend_map,
|
|
|
- save_file_path=os.path.dirname(__file__) + os.sep + '元梁山测试matlab结果均值.png')
|