# -*- coding: utf-8 -*- """ Created on Tue Jul 9 16:28:48 2024 @author: Administrator """ import multiprocessing import os from datetime import datetime, timedelta import numpy as np import pandas as pd import chardet pd.options.mode.copy_on_write = True # 获取文件编码 def detect_file_encoding(filename): # 读取文件的前1000个字节(足够用于大多数编码检测) with open(filename, 'rb') as f: rawdata = f.read(1000) result = chardet.detect(rawdata) encoding = result['encoding'] if encoding is None: encoding = 'gb18030' if encoding and encoding.lower() == 'gb2312' or encoding.lower().startswith("windows"): encoding = 'gb18030' return encoding # 读取数据到df def read_file_to_df(file_path, read_cols=list(), header=0): df = pd.DataFrame() if str(file_path).lower().endswith("csv") or str(file_path).lower().endswith("gz"): encoding = detect_file_encoding(file_path) end_with_gz = str(file_path).lower().endswith("gz") if read_cols: if end_with_gz: df = pd.read_csv(file_path, encoding=encoding, usecols=read_cols, compression='gzip', header=header) else: df = pd.read_csv(file_path, encoding=encoding, usecols=read_cols, header=header, on_bad_lines='warn') else: if end_with_gz: df = pd.read_csv(file_path, encoding=encoding, compression='gzip', header=header) else: df = pd.read_csv(file_path, encoding=encoding, header=header, on_bad_lines='warn') else: xls = pd.ExcelFile(file_path) # 获取所有的sheet名称 sheet_names = xls.sheet_names for sheet in sheet_names: if read_cols: df = pd.concat([df, pd.read_excel(xls, sheet_name=sheet, header=header, usecols=read_cols)]) else: df = pd.concat([df, pd.read_excel(xls, sheet_name=sheet, header=header)]) return df def __build_directory_dict(directory_dict, path, filter_types=None): # 遍历目录下的所有项 for item in os.listdir(path): item_path = os.path.join(path, item) if os.path.isdir(item_path): __build_directory_dict(directory_dict, item_path, filter_types=filter_types) elif os.path.isfile(item_path): if path not in directory_dict: directory_dict[path] = [] if filter_types is None or len(filter_types) == 0: directory_dict[path].append(item_path) elif str(item_path).split(".")[-1] in filter_types: if str(item_path).count("~$") == 0: directory_dict[path].append(item_path) # 读取所有文件 # 读取路径下所有的excel文件 def read_excel_files(read_path): directory_dict = {} __build_directory_dict(directory_dict, read_path, filter_types=['xls', 'xlsx', 'csv', 'gz']) return [path for paths in directory_dict.values() for path in paths if path] # 创建路径 def create_file_path(path, is_file_path=False): if is_file_path: path = os.path.dirname(path) if not os.path.exists(path): os.makedirs(path, exist_ok=True) if __name__ == '__main__': # path = r'/data/download/大唐玉湖性能分析离线分析/05整理数据/气象站数据' # save_path = r'/data/download/大唐玉湖性能分析离线分析/06整理数据/气象站数据' path = r'Z:\大唐玉湖性能分析离线分析\05整理数据\气象站数据' save_path = r'Z:\大唐玉湖性能分析离线分析\06整理数据\气象站数据' fengsu_df = read_file_to_df(os.path.join(path, '风速.csv'), read_cols=['当前时间', '实际风速']) fengxiang_df = read_file_to_df(os.path.join(path, '风向.csv'), read_cols=['当前时间', '实际风向']) fuzhaodu_df = read_file_to_df(os.path.join(path, '辐照度.csv'), read_cols=['时间', '水平总辐照度', '倾斜总辐照度', '散射辐照度']) shidu_df = read_file_to_df(os.path.join(path, '湿度.csv'), read_cols=['时间', '实际湿度']) wendu_df = read_file_to_df(os.path.join(path, '温度.csv'), read_cols=['时间', '实际温度']) yali_df = read_file_to_df(os.path.join(path, '压力.csv'), read_cols=['时间', '实际气压']) fengsu_df.rename(columns={'当前时间': '时间'}, inplace=True) fengxiang_df.rename(columns={'当前时间': '时间'}, inplace=True) dfs = [fengxiang_df, fengsu_df, fuzhaodu_df, shidu_df, wendu_df, yali_df] for df in dfs: df['时间'] = pd.to_datetime(df['时间']) df.set_index(keys='时间', inplace=True) df = pd.concat(dfs, axis=1) create_file_path(save_path, is_file_path=False) df.to_csv(os.path.join(save_path, '气象合并.csv'), encoding='utf-8')