# -*- coding: utf-8 -*- # @Time : 2024/5/16 # @Author : 魏志亮 import ast import datetime import os import shutil import warnings import chardet import pandas as pd from utils.log.trans_log import trans_print warnings.filterwarnings("ignore") # 获取文件编码 def detect_file_encoding(filename): # 读取文件的前1000个字节(足够用于大多数编码检测) with open(filename, 'rb') as f: rawdata = f.read(1000) result = chardet.detect(rawdata) encoding = result['encoding'] trans_print("文件类型:", filename, encoding) if encoding is None: encoding = 'gb18030' if encoding.lower() in ['utf-8', 'ascii', 'utf8']: return 'utf-8' return 'gb18030' def del_blank(df=pd.DataFrame(), cols=list()): for col in cols: if df[col].dtype == object: df[col] = df[col].str.strip() return df # 切割数组到多个数组 def split_array(array, num): return [array[i:i + num] for i in range(0, len(array), num)] def find_read_header(file_path, trans_cols, resolve_col_prefix=None): df = read_file_to_df(file_path, nrows=20) df.reset_index(inplace=True) count = 0 header = None df_cols = df.columns if resolve_col_prefix: valid_eval(resolve_col_prefix) df_cols = [eval(resolve_col_prefix) for column in df.columns] for col in trans_cols: if col in df_cols: count = count + 1 if count >= 2: header = 0 break count = 0 for index, row in df.iterrows(): if resolve_col_prefix: values = [eval(resolve_col_prefix) for column in row.values] else: values = row.values for col in trans_cols: if col in values: count = count + 1 if count > 2: header = index + 1 break return header # 读取数据到df def read_file_to_df(file_path, read_cols=list(), trans_cols=None, nrows=None, not_find_header='raise', resolve_col_prefix=None): begin = datetime.datetime.now() trans_print('开始读取文件', file_path) header = 0 find_cols = list() if trans_cols: header = find_read_header(file_path, trans_cols, resolve_col_prefix) trans_print(os.path.basename(file_path), "读取第", header, "行") if header is None: if not_find_header == 'raise': message = '未匹配到开始行,请检查并重新指定' trans_print(message) raise Exception(message) elif not_find_header == 'ignore': pass # read_cols.extend(find_cols) df = pd.DataFrame() if header is not None: try: if str(file_path).lower().endswith("csv") or str(file_path).lower().endswith("gz"): encoding = detect_file_encoding(file_path) end_with_gz = str(file_path).lower().endswith("gz") if read_cols: if end_with_gz: df = pd.read_csv(file_path, encoding=encoding, usecols=read_cols, compression='gzip', header=header, nrows=nrows) else: df = pd.read_csv(file_path, encoding=encoding, usecols=read_cols, header=header, on_bad_lines='warn', nrows=nrows) else: if end_with_gz: df = pd.read_csv(file_path, encoding=encoding, compression='gzip', header=header, nrows=nrows) else: df = pd.read_csv(file_path, encoding=encoding, header=header, on_bad_lines='warn', nrows=nrows) else: xls = pd.ExcelFile(file_path) # 获取所有的sheet名称 sheet_names = xls.sheet_names for sheet_name in sheet_names: if read_cols: now_df = pd.read_excel(xls, sheet_name=sheet_name, header=header, usecols=read_cols, nrows=nrows) else: now_df = pd.read_excel(xls, sheet_name=sheet_name, header=header, nrows=nrows) now_df['sheet_name'] = sheet_name df = pd.concat([df, now_df]) xls.close() trans_print('文件读取成功:', file_path, '数据数量:', df.shape, '耗时:', datetime.datetime.now() - begin) except Exception as e: trans_print('读取文件出错', file_path, str(e)) message = '文件:' + os.path.basename(file_path) + ',' + str(e) raise ValueError(message) return df def __build_directory_dict(directory_dict, path, filter_types=None): # 遍历目录下的所有项 for item in os.listdir(path): item_path = os.path.join(path, item) if os.path.isdir(item_path): __build_directory_dict(directory_dict, item_path, filter_types=filter_types) elif os.path.isfile(item_path): if path not in directory_dict: directory_dict[path] = [] if filter_types is None or len(filter_types) == 0: directory_dict[path].append(item_path) elif str(item_path).split(".")[-1] in filter_types: if str(item_path).count("~$") == 0: directory_dict[path].append(item_path) # 读取路径下所有的excel文件 def read_excel_files(read_path, filter_types=None): if filter_types is None: filter_types = ['xls', 'xlsx', 'csv', 'gz'] if os.path.isfile(read_path): return [read_path] directory_dict = {} __build_directory_dict(directory_dict, read_path, filter_types=filter_types) return [path for paths in directory_dict.values() for path in paths if path] # 读取路径下所有的文件 def read_files(read_path, filter_types=None): if filter_types is None: filter_types = ['xls', 'xlsx', 'csv', 'gz', 'zip', 'rar'] if os.path.isfile(read_path): return [read_path] directory_dict = {} __build_directory_dict(directory_dict, read_path, filter_types=filter_types) return [path for paths in directory_dict.values() for path in paths if path] def copy_to_new(from_path, to_path): is_file = False if to_path.count('.') > 0: is_file = True create_file_path(to_path, is_file_path=is_file) shutil.copy(from_path, to_path) # 创建路径 def create_file_path(path, is_file_path=False): """ 创建路径 :param path:创建文件夹的路径 :param is_file_path: 传入的path是否包含具体的文件名 """ if is_file_path: path = os.path.dirname(path) if not os.path.exists(path): os.makedirs(path, exist_ok=True) def valid_eval(eval_str): """ 验证 eval 是否包含非法的参数 """ safe_param = ["column", "wind_name", "df", "error_time", "str", "int"] eval_str_names = [node.id for node in ast.walk(ast.parse(eval_str)) if isinstance(node, ast.Name)] if not set(eval_str_names).issubset(safe_param): raise NameError( eval_str + " contains unsafe name :" + str(','.join(list(set(eval_str_names) - set(safe_param))))) return True if __name__ == '__main__': # aa = valid_eval("column[column.find('_')+1:]") # print(aa) # # aa = valid_eval("df['123'].apply(lambda wind_name: wind_name.replace('元宝山','').replace('号风机',''))") # print(aa) # # aa = valid_eval("'记录时间' if column == '时间' else column;import os; os.path") # print(aa) df = read_file_to_df(r"D:\data\11-12月.xls", trans_cols=['风机', '时间', '有功功率', '无功功率', '功率因数', '频率'], nrows=30) print(df.columns)