import numpy as np from pandas import DataFrame from service.plt_service import get_base_wind_and_power from utils.file.trans_methods import read_file_to_df class ClassIdentifier(object): def __init__(self, wind_turbine_number, file_path: str = None, origin_df: DataFrame = None, index='time_stamp', wind_velocity='wind_velocity', active_power='active_power'): """ :param wind_turbine_number: The wind turbine number. :param file_path: The file path of the input data. :param origin_df: The pandas DataFrame containing the input data. :param index: 索引字段 :param wind_velocity: 风速字段 :param active_power: 有功功率字段 """ self.wind_turbine_number = wind_turbine_number self.index = index self.wind_velocity = wind_velocity self.active_power = active_power self.rated_wind_speed = 'rated_wind_speed' self.rated_capacity = 'rated_capacity' if file_path is None and origin_df is None: raise ValueError("Either file_path or origin_df should be provided.") if file_path: self.df = read_file_to_df(file_path) else: self.df = origin_df self.df = self.df.set_index(keys=self.index) def identifier(self): # 风速 和 有功功率 df wind_and_power_df = self.df[[self.wind_velocity, self.active_power]] wind_and_power_df.reset_index(inplace=True) wind_and_power_df_count = wind_and_power_df.shape[0] PowerMax = wind_and_power_df[self.active_power].max() PowerRated = np.ceil(PowerMax / 100) * 100 PRated = 1500 # 额定功率1500kw,可改为2000kw VCutOut = 25 VCutIn = 3 VRated = 10 # 网格法确定风速风向分区数量,功率方向分区数量, # PNum = (PRated+100)/25 #功率分区间隔25kW PNum = int(np.ceil(PowerRated / 25)) # 功率分区间隔25kW VNum = int(np.ceil(VCutOut / 0.25)) # 风速分区间隔0.25m/s # 实发电量 EPActualTotal = 0 # 实发电量 for i in range(wind_and_power_df_count): if wind_and_power_df.loc[i, self.active_power] >= 0: EPActualTotal = EPActualTotal + wind_and_power_df.loc[i, self.active_power] / 6 print("EPActualTotal", EPActualTotal) # 平均风速 WindSpeedAvr = 0 WindSum = 0 for i in range(wind_and_power_df_count): if wind_and_power_df.loc[i, self.wind_velocity] >= 0: WindSum = WindSum + wind_and_power_df.loc[i, self.wind_velocity] WindSpeedAvr = WindSum / wind_and_power_df_count print("windSpeedAvr", WindSpeedAvr) # 用于计算损失电量的标杆功率曲线,可更换为风机设计功率曲线 # base_wind_and_power_df = get_base_wind_and_power(self.wind_turbine_number) base_wind_and_power_df = read_file_to_df(r"D:\中能智能\matlib计算相关\好点坏点matlib计算\A型风机设计功率曲线.csv", header=None) base_wind_and_power_df.columns = [self.rated_wind_speed, self.rated_capacity] if base_wind_and_power_df.empty: raise ValueError("风场编号:" + self.wind_turbine_number + "未查询到风速功率信息") base_wind_and_power_count = base_wind_and_power_df.shape[0] # 风机可利用率,计算方法:大于切入风速但发电功率小于0 TurbineRunRate = 0 nShouldGP = 0 nRealGP = 0 for i in range(wind_and_power_df_count): if wind_and_power_df.loc[i, self.wind_velocity] >= VCutIn: nShouldGP = nShouldGP + 1 if wind_and_power_df.loc[i, self.active_power] > 0: nRealGP = nRealGP + 1 if nShouldGP > 0: TurbineRunRate = nRealGP / nShouldGP * 100 print("disp(TurbineRunRate)", TurbineRunRate) # 理论电量- EPIdealTotalAAA = 0 # 理论电量- nWhichBin = 0 IdealPower = 0 for i in range(wind_and_power_df_count): # 应发电量-理论 nWhichBin = 0 for m in range(base_wind_and_power_count - 1): if base_wind_and_power_df.loc[m, self.rated_wind_speed] < wind_and_power_df.loc[ i, self.wind_velocity] <= \ base_wind_and_power_df.loc[m + 1, self.rated_wind_speed]: nWhichBin = m break # 插值计算对应设计功率 if nWhichBin > base_wind_and_power_count - 1 or nWhichBin == 0: continue IdealPower = (wind_and_power_df.loc[i, self.wind_velocity] - base_wind_and_power_df.loc[nWhichBin, self.rated_wind_speed]) / ( base_wind_and_power_df.loc[nWhichBin + 1, self.rated_wind_speed] - base_wind_and_power_df.loc[nWhichBin, self.rated_wind_speed]) * ( base_wind_and_power_df.loc[nWhichBin + 1, self.rated_capacity] - base_wind_and_power_df.loc[nWhichBin, self.rated_capacity]) \ + base_wind_and_power_df.loc[nWhichBin, self.rated_capacity] EPIdealTotalAAA = EPIdealTotalAAA + IdealPower / 6 print('EPIdealTotalAAA', EPIdealTotalAAA) # # 存储功率大于零的运行数据 DzMarch809 = np.zeros([wind_and_power_df_count, 2], dtype=float) nCounter1 = 0 for i in range(wind_and_power_df_count): if wind_and_power_df.loc[i, self.active_power] > 0: DzMarch809[nCounter1, 0] = wind_and_power_df.loc[i, self.wind_velocity] DzMarch809[nCounter1, 1] = wind_and_power_df.loc[i, self.active_power] nCounter1 = nCounter1 + 1 print('nCounter1', nCounter1) # 统计各网格落入的散点个数 XBoxNumber = np.ones([PNum, VNum], dtype=int) nWhichP = -1 nWhichV = -1 for i in range(nCounter1): for m in range(PNum): if m * 25 < DzMarch809[i, 1] <= (m + 1) * 25: nWhichP = m break for n in range(VNum): if ((n + 1) * 0.25 - 0.125) < DzMarch809[i, 0] <= ((n + 1) * 0.25 + 0.125): nWhichV = n break if nWhichP > -1 and nWhichV > -1: XBoxNumber[nWhichP, nWhichV] = XBoxNumber[nWhichP, nWhichV] + 1 for m in range(PNum): for n in range(VNum): XBoxNumber[m, n] = XBoxNumber[m, n] - 1 print('XBoxNumber', XBoxNumber) # 在功率方向将网格内散点绝对个数转换为相对百分比,备用 PBoxPercent = np.zeros([PNum, VNum], dtype=float) PBinSum = np.zeros(PNum, dtype=int) for i in range(PNum): for m in range(VNum): PBinSum[i] = PBinSum[i] + XBoxNumber[i, m] for m in range(VNum): if PBinSum[i] > 0: PBoxPercent[i, m] = XBoxNumber[i, m] / PBinSum[i] * 100 # 在风速方向将网格内散点绝对个数转换为相对百分比,备用 VBoxPercent = np.zeros([PNum, VNum], dtype=float) VBinSum = np.zeros(VNum, dtype=int) for i in range(VNum): for m in range(PNum): VBinSum[i] = VBinSum[i] + XBoxNumber[m, i] for m in range(PNum): if VBinSum[i] > 0: VBoxPercent[m, i] = XBoxNumber[m, i] / VBinSum[i] * 100 # 以水平功率带方向为准,分析每个水平功率带中,功率主带中心,即找百分比最大的网格位置。 PBoxMaxIndex = np.zeros(PNum, dtype=int) # 水平功率带最大网格位置索引 PBoxMaxP = np.zeros(PNum, dtype=int) # 水平功率带最大网格百分比 for m in range(PNum): # 确定每一水平功率带的最大网格位置索引即百分比值 PBoxMaxP[m], PBoxMaxIndex[m] = PBoxPercent[m, :].max(), PBoxPercent[m, :].argmax() # 以垂直风速方向为准,分析每个垂直风速带中,功率主带中心,即找百分比最大的网格位置。 VBoxMaxIndex = np.zeros(VNum, dtype=int) VBoxMaxV = np.zeros(VNum, dtype=int) for m in range(VNum): [VBoxMaxV[m], VBoxMaxIndex[m]] = VBoxPercent[:, m].max(), VBoxPercent[:, m].argmax() # 切入风速特殊处理,如果切入风速过于偏右,向左拉回 if PBoxMaxIndex[0] > 14: PBoxMaxIndex[0] = 9 # 以水平功率带方向为基准,进行分析 DotDense = np.zeros(PNum, dtype=int) # 每一水平功率带的功率主带包含的网格数 DotDenseLeftRight = np.zeros([PNum, 2], dtype=int) # 存储每一水平功率带的功率主带以最大网格为中心,向向左,向右扩展的网格数 DotValve = 90 # 从中心向左右对称扩展网格的散点百分比和的阈值。 PDotDenseSum = 0 iSpreadLeft = 1 # 向左扩展网格计数,初值为1 iSpreadRight = 1 # 向右扩展网格技术,初值为1 for i in range(PNum - 6): # 从最下层水平功率带1开始,向上到第PNum-6个水平功率带(额定功率一下水平功率带),逐一分析 PDotDenseSum = PBoxMaxP[i] # 以中心最大水平功率带为基准,向左向右对称扩展网格,累加各网格散点百分比 iSpreadRight = 1 iSpreadLeft = 1 while PDotDenseSum < DotValve: if (PBoxMaxIndex[i] + iSpreadRight) < VNum - 1: PDotDenseSum = PDotDenseSum + PBoxPercent[i, PBoxMaxIndex[i] + iSpreadRight] # 向右侧扩展 iSpreadRight = iSpreadRight + 1 if (PBoxMaxIndex[i] + iSpreadRight) > VNum - 1: break if (PBoxMaxIndex[i] - iSpreadLeft) > 0: PDotDenseSum = PDotDenseSum + PBoxPercent[i, PBoxMaxIndex[i] - iSpreadLeft] # 向左侧扩展 iSpreadLeft = iSpreadLeft + 1 if (PBoxMaxIndex[i] - iSpreadLeft) <= 0: break iSpreadRight = iSpreadRight - 1 iSpreadLeft = iSpreadLeft - 1 # 向左右对称扩展完毕 DotDenseLeftRight[i, 0] = iSpreadLeft DotDenseLeftRight[i, 1] = iSpreadRight DotDense[i] = iSpreadLeft + iSpreadRight + 1 # 各行功率主带右侧宽度的中位数最具有代表性 DotDenseWidthLeft = np.zeros([PNum - 6, 1], dtype=int) for i in range(PNum - 6): DotDenseWidthLeft[i] = DotDenseLeftRight[i, 1] MainBandRight = np.median(DotDenseWidthLeft) # 散点向右显著延展分布的水平功率带为限功率水平带 PowerLimit = np.zeros([PNum, 1], dtype=int) # 各水平功率带是否为限功率标识,==1:是;==0:不是 WidthAverage = 0 # 功率主带平均宽度 WidthVar = 0 # 功率主带方差 # PowerLimitValve = 6 #限功率主带判别阈值 PowerLimitValve = np.ceil(MainBandRight) + 3 # 限功率主带判别阈值 nCounterLimit = 0 nCounter = 0 for i in range(PNum - 6): if DotDenseLeftRight[i, 1] > PowerLimitValve and PBinSum[i] > 20: # 如果向右扩展网格数大于阈值,且该水平功率带点总数>20,是 PowerLimit[i] = 1 nCounterLimit = nCounterLimit + 1 if DotDenseLeftRight[i, 1] <= PowerLimitValve: WidthAverage = WidthAverage + DotDenseLeftRight[i, 1] # 统计正常水平功率带右侧宽度 nCounter = nCounter + 1 WidthAverage = WidthAverage / nCounter # 功率主带平均宽度 print("WidthAverage", WidthAverage) # 各水平功率带的功率主带宽度的方差,反映从下到上宽度是否一致,或是否下宽上窄等异常情况 for i in range(PNum - 6): if DotDenseLeftRight[i, 1] <= PowerLimitValve: WidthVar = WidthVar + (DotDenseLeftRight[i, 1] - WidthAverage) * ( DotDenseLeftRight[i, 1] - WidthAverage) WidthVar = np.sqrt(WidthVar / nCounter) # 各水平功率带,功率主带的风速范围,右侧扩展网格数*2*0.25 PowerBandWidth = WidthAverage * 2 * 0.25 # 对限负荷水平功率带的最大网格较下面相邻层显著偏右,拉回 for i in range(1, PNum - 6): if PowerLimit[i] == 1 and abs(PBoxMaxIndex[i] - PBoxMaxIndex[i - 1]) > 5: PBoxMaxIndex[i] = PBoxMaxIndex[i - 1] + 1 # 输出各层功率主带的左右边界网格索引 DotDenseInverse = np.zeros([PNum, 2], dtype=int) for i in range(PNum): DotDenseInverse[i, :] = DotDenseLeftRight[PNum - i - 1, :] # print('DotDenseInverse', DotDenseInverse) # 功率主带的右边界 CurveWidthR = int(np.ceil(WidthAverage) + 2) # CurveWidthL = 6 #功率主带的左边界 CurveWidthL = CurveWidthR BBoxLimit = np.zeros([PNum, VNum], dtype=int) # 网格是否为限功率网格的标识,如果为限功率水平功率带,从功率主带右侧边缘向右的网格为限功率网格 for i in range(2, PNum - 6): if PowerLimit[i] == 1: for j in range(PBoxMaxIndex[i] + CurveWidthR, VNum): BBoxLimit[i, j] = 1 BBoxRemove = np.zeros([PNum, VNum], dtype=int) # 数据异常需要剔除的网格标识,标识==1:功率主带右侧的欠发网格;==2:功率主带左侧的超发网格 for m in range(PNum - 6): for n in range(PBoxMaxIndex[m] + CurveWidthR - 1, VNum): BBoxRemove[m, n] = 1 for n in range(PBoxMaxIndex[m] - CurveWidthL - 1, 0, -1): BBoxRemove[m, n] = 2 # 确定功率主带的左上拐点,即额定风速位置的网格索引 CurveTop = np.zeros(2, dtype=int) CurveTopValve = 3 # 网格的百分比阈值 BTopFind = 0 for m in range(PNum - 4 - 1, 0, -1): for n in range(VNum): if VBoxPercent[m, n] > CurveTopValve and XBoxNumber[m, n] >= 10: # 如左上角网格的百分比和散点个数大于阈值。 CurveTop[0] = m CurveTop[1] = n BTopFind = 1 break if BTopFind == 1: break IsolateValve = 3 for m in range(PNum - 6): for n in range(PBoxMaxIndex[m] + CurveWidthR - 1, VNum): if PBoxPercent[m, n] < IsolateValve: BBoxRemove[m, n] = 1 # 功率主带顶部宽度 CurveWidthT = 2 for m in range(PNum - CurveWidthT - 1, PNum): for n in range(VNum): BBoxRemove[m, n] = 3 # 网格为额定功率以上的超发点 # 功率主带拐点左侧的欠发网格标识 for m in range(PNum - 5 - 1, PNum): for n in range(CurveTop[1] - 2 - 1): BBoxRemove[m, n] = 2 # 以网格的标识,决定该网格内数据的标识。Dzwind_and_power_dfSel功率非零数据的标识位。散点在哪个网格,此网格的标识即为该点的标识 Dzwind_and_power_dfSel = np.zeros(nCounter1, dtype=int) # is ==1,欠发功率点;==2,超发功率点;==3,额定风速以上的超发功率点 ==4, 限电 nWhichP = 0 nWhichV = 0 nBadA = 0 for i in range(nCounter1): for m in range(PNum): if DzMarch809[i, 1] > (m - 1) * 25 and DzMarch809[i, 1] <= m * 25: nWhichP = m break for n in range(VNum): if DzMarch809[i, 0] > (n * 0.25 - 0.125) and DzMarch809[i, 0] <= (n * 0.25 + 0.125): nWhichV = n break if nWhichP > 0 and nWhichV > 0: if BBoxRemove[nWhichP, nWhichV] == 1: Dzwind_and_power_dfSel[i] = 1 nBadA = nBadA + 1 if BBoxRemove[nWhichP, nWhichV] == 2: Dzwind_and_power_dfSel[i] = 2 if BBoxRemove[nWhichP, nWhichV] == 3: Dzwind_and_power_dfSel[i] = 0 # 3 # 额定风速以上的超发功率点认为是正常点,不再标识。 if BBoxLimit[nWhichP, nWhichV] == 1 and nWhichP>16: Dzwind_and_power_dfSel[i] = 4 print("nWhichP", nWhichP) print("nWhichV", nWhichV) print("nBadA", nBadA) # 限负荷数据标识方法2:把数据切割为若干个窗口。对每一窗口,以第一个点为基准,连续nWindowLength个数据的功率在方差范围内,呈现显著水平分布的点 PVLimit = np.zeros([nCounter1, 2], dtype=int) # 存储限负荷数据 nLimitTotal = 0 nWindowLength = 3 LimitWindow = np.zeros(nWindowLength, dtype=int) UpLimit = 0 # 上限 LowLimit = 0 # 下限 PowerStd = 15 # 功率波动方差 bAllInUpLow = 1 # ==1:窗口内所有数据均在方差上下限之内,限负荷==0,不满足条件 bAllInAreas = 1 # ==1:窗口所有数据均在200~PRated-300kW范围内;==0:不满足此条件 nWindowNum = int(np.floor(nCounter1 / nWindowLength)) PowerLimitUp = PRated - 300 PowerLimitLow = 200 for i in range(nWindowNum): for j in range(nWindowLength): LimitWindow[j] = DzMarch809[i * nWindowLength + j, 1] bAllInAreas = 1 for j in range(nWindowLength): if LimitWindow[j] < PowerLimitLow or LimitWindow[j] > PowerLimitUp: bAllInAreas = 0 if bAllInAreas == 0: continue UpLimit = LimitWindow[0] + PowerStd LowLimit = LimitWindow[0] - PowerStd bAllInUpLow = 1 for j in range(1, nWindowLength): if LimitWindow[j] < LowLimit or LimitWindow[j] > UpLimit: bAllInUpLow = 0 if bAllInUpLow == 1: for j in range(nWindowLength): Dzwind_and_power_dfSel[i * nWindowLength + j] = 4 # 标识窗口内的数据为限负荷数据 for j in range(nWindowLength): PVLimit[nLimitTotal, :] = DzMarch809[i * nWindowLength + j, :] nLimitTotal = nLimitTotal + 1 print("nLimitTotal", nLimitTotal) # 相邻水平功率主带的锯齿平滑 PVLeftDown = np.zeros(2, dtype=int) PVRightUp = np.zeros(2, dtype=int) nSmooth = 0 for i in range(PNum - 6 - 1): PVLeftDown = np.zeros(2, dtype=int) PVRightUp = np.zeros(2, dtype=int) if (PBoxMaxIndex[i + 1] - PBoxMaxIndex[i]) >= 1: PVLeftDown[0] = (PBoxMaxIndex[i] + CurveWidthR) * 0.25 - 0.125 PVLeftDown[1] = (i - 1) * 25 PVRightUp[0] = (PBoxMaxIndex[i + 1] + CurveWidthR) * 0.25 - 0.125 PVRightUp[1] = (i + 1 - 1) * 25 for m in range(nCounter1): if DzMarch809[m, 0] > PVLeftDown[0] and DzMarch809[m, 0] < PVRightUp[0] and PVLeftDown[1] < \ DzMarch809[m, 1] < PVRightUp[1]: # 在该锯齿中 if (DzMarch809[m, 1] - PVLeftDown[1]) / (DzMarch809[m, 0] - PVLeftDown[0]) > ( PVRightUp[1] - PVLeftDown[1]) / ( PVRightUp[0] - PVLeftDown[0]): # 斜率大于对角连线,则在锯齿左上三角形中,选中 Dzwind_and_power_dfSel[m] = 0 nSmooth = nSmooth + 1 print("nSmooth", nSmooth) # 存储好点 nCounterPV = 0 PVDot = np.zeros([nCounter1, 2], dtype=int) for i in range(nCounter1): if Dzwind_and_power_dfSel[i] == 0: PVDot[nCounterPV, :] = DzMarch809[i, :] nCounterPV = nCounterPV + 1 nCounterVP = nCounterPV print("nCounterVP", nCounterVP) # 存储坏点 nCounterBad = 0 PVBad = np.zeros([nCounter1, 2], dtype=int) for i in range(nCounter1): if Dzwind_and_power_dfSel[i] == 1 or Dzwind_and_power_dfSel[i] == 2 or Dzwind_and_power_dfSel[i] == 3: PVBad[nCounterBad, :] = DzMarch809[i, :] nCounterBad = nCounterBad + 1 print("nCounterBad", nCounterBad) # 用功率主带中的好点绘制实测功率曲 XBinNumber = np.ones(50, dtype=int) PCurve = np.zeros([50, 2], dtype=int) PCurve[:, 0] = [i / 2 for i in range(1, 51)] XBinSum = np.zeros([50, 2], dtype=int) nWhichBin = 0 for i in range(nCounterVP): nWhichBin = 0 for b in range(50): if PVDot[i, 0] > (b * 0.5 - 0.25) and PVDot[i, 0] <= (b * 0.5 + 0.25): nWhichBin = b break if nWhichBin > 0: XBinSum[nWhichBin, 0] = XBinSum[nWhichBin, 0] + PVDot[i, 0] # wind speed XBinSum[nWhichBin, 1] = XBinSum[nWhichBin, 1] + PVDot[i, 1] # Power XBinNumber[nWhichBin] = XBinNumber[nWhichBin] + 1 for b in range(50): XBinNumber[b] = XBinNumber[b] - 1 for b in range(50): if XBinNumber[b] > 0: PCurve[b, 0] = XBinSum[b, 0] / XBinNumber[b] PCurve[b, 1] = XBinSum[b, 1] / XBinNumber[b] # 对额定风速以上的功率直接赋额定功率 VRatedNum = int(VRated / 0.5) for m in range(VRatedNum, 50): if PCurve[m, 1] == 0: PCurve[m, 1] = PRated # print("PCurve", PCurve) # 绘制标准正则功率曲线,以0.5m/s标准为间隔 # 15m/s以上为额定功率,15m/s以下为计算得到 PCurveNorm = np.zeros([50, 2], dtype=int) for i in range(30, 50): PCurveNorm[i, 0] = i * 0.5 PCurveNorm[i, 1] = PRated # 15m/s一下正则功率曲线 CurveData = np.zeros([30, 2], dtype=int) for i in range(30): CurveData[i, :] = PCurve[i, :] CurveNorm = np.zeros([30, 2], dtype=int) VSpeed = [i / 2 for i in range(1, 31)] WhichBin = 0 K = 0 a = 0 for m in range(30): K = 0 a = 0 for n in range(30): if abs(CurveData[n, 0] - VSpeed[m]) < 0.1: WhichBin = n break if WhichBin > 1: if CurveData[WhichBin, 0] - CurveData[WhichBin - 1, 0] > 0: K = (CurveData[WhichBin, 1] - CurveData[WhichBin - 1, 1]) / ( CurveData[WhichBin, 0] - CurveData[WhichBin - 1, 0]) a = CurveData[WhichBin, 1] - K * CurveData[WhichBin, 0] CurveNorm[m, 0] = VSpeed[m] CurveNorm[m, 1] = a + K * VSpeed[m] for i in range(30): PCurveNorm[i, :] = CurveNorm[i, :] # 子模块3:损失电量计算及发电性能评价 CC = len(PCurve[:, 0]) EPIdealTotal = 0 # 计算停机损失 EPLostStopTotal = 0 EPLost = 0 nWhichBin = 0 IdealPower = 0 nStopTotal = 0 for i in range(wind_and_power_df_count): if wind_and_power_df.loc[i, self.active_power] <= 0: nWhichBin = 0 for m in range(base_wind_and_power_count - 1): if wind_and_power_df.loc[i, self.wind_velocity] > base_wind_and_power_df.loc[ m, self.rated_wind_speed] and wind_and_power_df.loc[i, self.wind_velocity] <= \ base_wind_and_power_df.loc[ m + 1, self.rated_wind_speed]: nWhichBin = m break if nWhichBin > base_wind_and_power_count - 1 or nWhichBin == 0: continue IdealPower = (wind_and_power_df.loc[i, self.wind_velocity] - base_wind_and_power_df.loc[ nWhichBin, self.rated_wind_speed]) / ( base_wind_and_power_df.loc[nWhichBin + 1, self.rated_wind_speed] - base_wind_and_power_df.loc[ nWhichBin, self.rated_wind_speed]) * ( base_wind_and_power_df.loc[nWhichBin + 1, self.rated_capacity] - base_wind_and_power_df.loc[nWhichBin, self.rated_capacity]) \ + base_wind_and_power_df.loc[nWhichBin, self.rated_capacity] EPLost = IdealPower / 6 EPLostStopTotal = EPLostStopTotal + EPLost nStopTotal = nStopTotal + 1 print("EPLost", EPLost) print("nStopTotal", nStopTotal) print("EPLostStopTotal", EPLostStopTotal) nWhichP = 0 nWhichV = 0 nWhichBin = 0 IdealPower = 0 # 计算欠发损失,此欠发损失已不包括限电损失,限电点在前面已经从欠发点中去除。 EPLostBadTotal = 0 EPLost = 0 nBadTotal = 0 LostBadPercent = 0 EPOverTotal = 0 EPOver = 0 nOverTotal = 0 for i in range(nCounter1): if Dzwind_and_power_dfSel[i] == 1: nWhichBin = 0 for m in range(base_wind_and_power_count - 1): if DzMarch809[i, 0] > base_wind_and_power_df.loc[m, self.rated_wind_speed] \ and DzMarch809[i, 0] <= base_wind_and_power_df.loc[m + 1, self.rated_wind_speed]: nWhichBin = m break if nWhichBin > base_wind_and_power_count - 1 or nWhichBin == 0: continue IdealPower = (DzMarch809[i, 0] - base_wind_and_power_df.loc[nWhichBin, self.rated_wind_speed]) / ( base_wind_and_power_df.loc[nWhichBin + 1, self.rated_wind_speed] - base_wind_and_power_df.loc[ nWhichBin, self.rated_wind_speed]) * ( base_wind_and_power_df.loc[nWhichBin + 1, self.rated_capacity] - base_wind_and_power_df.loc[nWhichBin, self.rated_capacity]) + \ base_wind_and_power_df.loc[nWhichBin, self.rated_capacity] EPLost = abs(IdealPower - DzMarch809[i, 1]) / 6 EPLostBadTotal = EPLostBadTotal + EPLost nBadTotal = nBadTotal + 1 # 额定风速以上超发电量 if Dzwind_and_power_dfSel[i] == 3: EPOver = (DzMarch809[i, 1] - PRated) / 6 EPOverTotal = EPOverTotal + EPOver nOverTotal = nOverTotal + 1 print("EPLost", EPLost) print("nBadTotal", nBadTotal) print("EPLostBadTotal", EPLostBadTotal) print("EPOverTotal", EPOverTotal) print("nOverTotal", nOverTotal) # 功率曲线未达标损失 EPLostPerformTotal = 0 nWhichBinI = 0 IdealPower = 0 for i in range(nCounterVP): for m in range(base_wind_and_power_count - 1): if PVDot[i, 0] > base_wind_and_power_df.loc[m, self.rated_wind_speed] and PVDot[i, 0] <= \ base_wind_and_power_df.loc[m + 1, self.rated_wind_speed]: nWhichBinI = m break if nWhichBinI > base_wind_and_power_count - 1 or nWhichBinI == 0: continue IdealPower = (PVDot[i, 0] - base_wind_and_power_df.loc[nWhichBinI, self.rated_wind_speed]) / ( base_wind_and_power_df.loc[nWhichBinI + 1, self.rated_wind_speed] - base_wind_and_power_df.loc[ nWhichBinI, self.rated_wind_speed]) * \ (base_wind_and_power_df.loc[nWhichBinI + 1, self.rated_capacity] - base_wind_and_power_df.loc[nWhichBinI, self.rated_capacity]) + \ base_wind_and_power_df.loc[nWhichBinI, self.rated_capacity] EPLostPerformTotal = EPLostPerformTotal + (IdealPower - PVDot[i, 1]) / 6 print("EPLostPerformTotal", EPLostPerformTotal) # 限电损失 EPLostLimitTotal = 0 EPLost = 0 nLimitTotal = 0 PVLimit = np.zeros([nCounter1, 2]) for i in range(nCounter1): if Dzwind_and_power_dfSel[i] == 4: nWhichBin = 0 for m in range(base_wind_and_power_count - 1): if DzMarch809[i, 0] > base_wind_and_power_df.loc[m, self.rated_wind_speed] and DzMarch809[i, 0] <= \ base_wind_and_power_df.loc[m + 1, self.rated_wind_speed]: nWhichBin = m break # 插值计算对应设计功率 if nWhichBin > base_wind_and_power_count - 1 or nWhichBin == 0: continue IdealPower = (DzMarch809[i, 0] - base_wind_and_power_df.loc[nWhichBin, self.rated_wind_speed]) / ( base_wind_and_power_df.loc[nWhichBin + 1, self.rated_wind_speed] - base_wind_and_power_df.loc[nWhichBin, self.rated_wind_speed]) * ( base_wind_and_power_df.loc[nWhichBin + 1, self.rated_capacity] - base_wind_and_power_df.loc[nWhichBin, self.rated_capacity]) + \ base_wind_and_power_df.loc[nWhichBin, self.rated_capacity] EPLost = np.abs(IdealPower - DzMarch809[i, 1]) / 6 EPLostLimitTotal = EPLostLimitTotal + EPLost PVLimit[nLimitTotal, :] = DzMarch809[i, :] nLimitTotal = nLimitTotal + 1 nLimitTotal = nLimitTotal - 1 print("nLimitTotal", nLimitTotal) # 欠发和限点损失总和 EPLostBadLimitTotal = EPLostBadTotal + EPLostLimitTotal # 如果功率曲线未达标损失为正 if EPLostPerformTotal >= 0: EPIdealTotal = EPActualTotal + EPLostStopTotal + EPLostLimitTotal + EPLostBadTotal + EPLostPerformTotal # 如果功率曲线未达标损失为负 if EPLostPerformTotal < 0: EPIdealTotal = EPActualTotal + EPLostStopTotal + EPLostLimitTotal + EPLostBadTotal print("EPIdealTotal", EPIdealTotal) # 可以比较求和得到的应发功率EPIdealTotal与理论计算得到的应发功率EPIdealTotalAAA的差别 # 需要去除的超发功率:(1)功率主带左侧的超发点;(2)额定风速以上的超发点。 RemoveOverEP = 0 nType2 = 0 for i in range(nCounter1): if Dzwind_and_power_dfSel[i] == 2: # 功率主带左侧的超发坏点 nWhichBin = 0 for m in range(base_wind_and_power_count - 1): if DzMarch809[i, 0] > base_wind_and_power_df.loc[m, self.rated_wind_speed] and DzMarch809[i, 0] <= \ base_wind_and_power_df.loc[m + 1, self.rated_wind_speed]: nWhichBin = m break if nWhichBin > base_wind_and_power_count - 1 or nWhichBin == 0: continue IdealPower = (DzMarch809[i, 0] - base_wind_and_power_df.loc[nWhichBin, self.rated_wind_speed]) / ( base_wind_and_power_df.loc[nWhichBin + 1, self.rated_wind_speed] - base_wind_and_power_df.loc[ nWhichBin, self.rated_wind_speed]) * ( base_wind_and_power_df.loc[nWhichBin + 1, self.rated_capacity] - base_wind_and_power_df.loc[nWhichBin, self.rated_capacity]) + \ base_wind_and_power_df.loc[nWhichBin, self.rated_capacity] RemoveOverEP = RemoveOverEP + (DzMarch809[i, 1] - IdealPower) / 6 nType2 = nType2 + 1 print("RemoveOverEP", RemoveOverEP) print("nType2", nType2) # 额定功率以上的超发点 nTypeOver = 0 for i in range(nCounter1): if DzMarch809[i, 1] > PRated: RemoveOverEP = RemoveOverEP + (DzMarch809[i, 1] - PRated) / 6 nTypeOver = nTypeOver + 1 print("RemoveOverEP", RemoveOverEP) print("nTypeOver", nTypeOver) def run(self): # Implement your class identification logic here self.identifier() if __name__ == '__main__': test = ClassIdentifier('test', r"D:\中能智能\matlib计算相关\好点坏点matlib计算\A01.csv", index='时间', wind_velocity='风速', active_power='功率') test.run()