import datetime import multiprocessing import os from concurrent.futures.thread import ThreadPoolExecutor import pandas as pd def __build_directory_dict(directory_dict, path, filter_types=None): # 遍历目录下的所有项 for item in os.listdir(path): item_path = os.path.join(path, item) if os.path.isdir(item_path): __build_directory_dict(directory_dict, item_path, filter_types=filter_types) elif os.path.isfile(item_path): if path not in directory_dict: directory_dict[path] = [] if filter_types is None or len(filter_types) == 0: directory_dict[path].append(item_path) elif str(item_path).split(".")[-1] in filter_types: if str(item_path).count("~$") == 0: directory_dict[path].append(item_path) # 读取路径下所有的excel文件 def read_excel_files(read_path, filter_types=None): if filter_types is None: filter_types = ['xls', 'xlsx', 'csv', 'gz'] if os.path.isfile(read_path): return [read_path] directory_dict = {} __build_directory_dict(directory_dict, read_path, filter_types=filter_types) return [path for paths in directory_dict.values() for path in paths if path] # 读取路径下所有的文件 def read_files(read_path, filter_types=None): if filter_types is None: filter_types = ['xls', 'xlsx', 'csv', 'gz', 'zip', 'rar'] if os.path.isfile(read_path): return [read_path] directory_dict = {} __build_directory_dict(directory_dict, read_path, filter_types=filter_types) return [path1 for paths in directory_dict.values() for path1 in paths if path1] def get_line_count(file_path): with open(file_path, 'r', encoding='utf-8') as file: return sum(1 for _ in file) def read_file_and_read_count_exec(file_path): base_name = os.path.basename(file_path).split('.')[0] cols = base_name.split('_') cols.append(get_line_count(file_path)) return cols def read_file_and_read_count(index, file_paths, datas): pretty_print(f'开始执行:{index + 1}') with ThreadPoolExecutor(max_workers=10) as executor: colses = list(executor.map(read_file_and_read_count_exec, file_paths)) datas.extend(colses) pretty_print(f'结束执行:{index + 1}],数据长度:{len(datas)}') def get_name(x): result_str = '' if x['col3'] != '无': result_str += x['col3'] result_str += x['col2'] if x['col4'] != '无': result_str += x['col4'] result_str += x['col6'] return result_str def split_array(array, num): return [array[i:i + num] for i in range(0, len(array), num)] def pretty_print(*args): print(datetime.datetime.now(), ",".join([str(arg) for arg in args])) if __name__ == '__main__': datas = multiprocessing.Manager().list() all_files = read_files(r'D:\cms数据\张崾先风电场2期-导出\CMSFTPServer\ZYXFDC2', ['txt']) # all_files = read_files(r'D:\cms数据\测试\result\CMSFTPServer\ZYXFDC2', ['txt']) pretty_print(f"文件长度{len(all_files)}") arrays = split_array(all_files, 5000) pretty_print(f"切分个数{len(arrays)}") with multiprocessing.Pool(10) as pool: pool.starmap(read_file_and_read_count, [(index, file_paths, datas) for index, file_paths in enumerate(arrays)]) df = pd.DataFrame(data=list(datas), columns=[f'col{i}' for i in range(10)]) df['col8'] = pd.to_datetime(df['col8'], format='%Y%m%d%H%M%S', errors='coerce') df.sort_values(by=['col1', 'col8'], inplace=True) df['测点完整名称'] = df.apply(get_name, axis=1) df.to_csv('d://cms数据//cms_data.csv', index=False, encoding='utf8')