import multiprocessing import os import sys sys.path.insert(0, os.path.abspath(__file__).split("tmp_file")[0]) import pandas as pd from utils.file.trans_methods import read_file_to_df def save_percent(value, save_decimal=7): return round(value, save_decimal) * 100 def read_and_select(file_path, read_cols): result_df = pd.DataFrame() df = read_file_to_df(file_path, read_cols=read_cols) wind_name = os.path.basename(file_path).split('.')[0] df['风机号'] = wind_name df = df.query("(Time>='2024-06-01 00:00:00') & (Time<'2024-12-01 00:00:00')") count = 15811200 # 1秒数据 半年 repeat_time_count = df.shape[0] - len(df['Time'].unique()) print(wind_name, count, repeat_time_count) result_df['风机号'] = [wind_name] result_df['重复率'] = [save_percent(repeat_time_count / count)] result_df['重复次数'] = [repeat_time_count] result_df['总记录数'] = [count] for read_col in read_cols: if read_col != 'Time': df[read_col] = pd.to_numeric(df[read_col], errors='coerce') else: df[read_col] = pd.to_datetime(df[read_col], errors='coerce') group_df = df.groupby(by=['风机号']).count() group_df.reset_index(inplace=True) count_df = pd.DataFrame(group_df) total_count = count_df[read_cols].values[0].sum() print(wind_name, total_count, count * len(read_cols)) result_df['平均缺失率,单位%'] = [save_percent(1 - total_count / (count * len(read_cols)))] result_df['缺失数值'] = ['-'.join([str(count - i) for i in count_df[read_cols].values[0]])] del group_df fengsu_count = 0 fengsu_cols = [i for i in read_cols if '风速' in i] fengsu_str = '' for col in fengsu_cols: now_count = df.query("(" + col + " < 0) | (" + col + " > 80)").shape[0] fengsu_count = fengsu_count + now_count fengsu_str = fengsu_str + ',' + col + ':' + str(fengsu_count) result_df['风速异常'] = [fengsu_str] gonglv_cols = ['有功功率', '瞬时功率', '当前理论可发最大功率'] gonglv_count = 0 gonglv_str = '' for col in gonglv_cols: now_count = df.query("(" + col + " < -200) | (" + col + " > 3000)").shape[0] gonglv_count = gonglv_count + now_count gonglv_str = gonglv_str + ',' + col + ':' + str(gonglv_count) result_df['功率异常'] = [gonglv_str] result_df['平均异常率'] = [ save_percent((fengsu_count + fengsu_count) / ((len(fengsu_cols) + len(gonglv_cols)) * count))] return result_df if __name__ == '__main__': read_cols = ['Time', '设备主要状态', '功率曲线风速', '湍流强度', '实际风速', '有功功率', '桨叶角度A', '桨叶角度B', '桨叶角度C', '机舱内温度', '机舱外温度', '绝对风向', '机舱绝对位置', '叶轮转速', '发电机转速', '瞬时风速', '有功设定反馈', '当前理论可发最大功率', '空气密度', '偏航误差', '发电机扭矩', '瞬时功率', '风向1s', '偏航压力', '桨叶1速度', '桨叶2速度', '桨叶3速度', '桨叶1角度给定', '桨叶2角度给定', '桨叶3角度给定', '轴1电机电流', '轴2电机电流', '轴3电机电流', '轴1电机温度', '轴2电机温度', '轴3电机温度', '待机', '启动', '偏航', '并网', '限功率', '正常发电', '故障', '计入功率曲线', '运行发电机冷却风扇1', '运行发电机冷却风扇2', '激活偏航解缆阀', '激活偏航刹车阀', '激活风轮刹车阀', '激活顺时针偏航', '激活逆时针偏航', '电缆扭角'] read_dir = r'/data/download/collection_data/1进行中/张崾先风电场-陕西-华电/清理数据/点检表以外测点儿-20241210' files = os.listdir(read_dir) with multiprocessing.Pool(4) as pool: dfs = pool.starmap(read_and_select, [(os.path.join(read_dir, i), read_cols) for i in files]) df = pd.concat(dfs, ignore_index=True) df.sort_values(by=['风机号'], inplace=True) df.to_csv("张崾先统计-秒.csv", encoding='utf8', index=False)