ReadAndSaveTmp.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354
  1. import base64
  2. import datetime
  3. import multiprocessing
  4. import traceback
  5. from os import *
  6. import pandas as pd
  7. from etl.common.PathsAndTable import PathsAndTable
  8. from etl.wind_power.min_sec import TransParam
  9. from service.plt_service import update_trans_transfer_progress
  10. from utils.file.trans_methods import read_excel_files, split_array, del_blank, \
  11. create_file_path, read_file_to_df, valid_eval
  12. from utils.log.trans_log import trans_print
  13. from utils.systeminfo.sysinfo import use_files_get_max_cpu_count, get_dir_size, max_file_size_get_max_cpu_count
  14. class ReadAndSaveTmp(object):
  15. def __init__(self, pathsAndTable: PathsAndTable, trans_param: TransParam):
  16. self.pathsAndTable = pathsAndTable
  17. self.trans_param = trans_param
  18. self.exist_wind_names = multiprocessing.Manager().list()
  19. self.lock = multiprocessing.Manager().Lock()
  20. self.file_lock = multiprocessing.Manager().dict()
  21. def _save_to_tmp_csv_by_name(self, df, name):
  22. save_name = str(name) + '.csv'
  23. save_path = path.join(self.pathsAndTable.get_read_tmp_path(), save_name)
  24. create_file_path(save_path, is_file_path=True)
  25. with self.lock:
  26. if name in self.exist_wind_names:
  27. contains_name = True
  28. else:
  29. contains_name = False
  30. self.exist_wind_names.append(name)
  31. if contains_name:
  32. df.to_csv(save_path, index=False, encoding='utf8', mode='a',
  33. header=False)
  34. else:
  35. df.to_csv(save_path, index=False, encoding='utf8')
  36. def save_merge_data(self, file_path):
  37. df = self.read_excel_to_df(file_path)
  38. if self.trans_param.wind_name_exec:
  39. if valid_eval(self.trans_param.wind_name_exec):
  40. exec_str = f"df['wind_turbine_number'].apply(lambda wind_name: {self.trans_param.wind_name_exec} )"
  41. df['wind_turbine_number'] = eval(exec_str)
  42. names = set(df['wind_turbine_number'].values)
  43. cols = list(df.columns)
  44. cols.sort()
  45. csv_name = base64.b64encode('-'.join(cols).encode('utf8')).decode('utf-8') + ".csv"
  46. for name in names:
  47. exist_name = name + '-' + csv_name
  48. merge_path = self.pathsAndTable.get_merge_tmp_path(name)
  49. create_file_path(merge_path)
  50. with self.lock:
  51. if exist_name in self.exist_wind_names:
  52. contains_name = True
  53. else:
  54. contains_name = False
  55. self.exist_wind_names.append(exist_name)
  56. save_path = path.join(merge_path, csv_name)
  57. now_df = df[df['wind_turbine_number'] == name]
  58. if contains_name:
  59. now_df.to_csv(save_path, index=False, encoding='utf-8', mode='a',
  60. header=False)
  61. else:
  62. now_df.to_csv(save_path, index=False, encoding='utf-8')
  63. def df_save_to_tmp_file(self, df=pd.DataFrame()):
  64. if self.trans_param.is_vertical_table:
  65. pass
  66. else:
  67. # 转换字段
  68. same_col = {}
  69. if self.trans_param.cols_tran:
  70. cols_tran = self.trans_param.cols_tran
  71. real_cols_trans = dict()
  72. for k, v in cols_tran.items():
  73. if v and not v.startswith("$"):
  74. if v not in real_cols_trans.keys():
  75. real_cols_trans[v] = k
  76. else:
  77. value = real_cols_trans[v]
  78. if value in same_col.keys():
  79. same_col[value].append(k)
  80. else:
  81. same_col[value] = [k]
  82. df.rename(columns=real_cols_trans, inplace=True)
  83. # 添加使用同一个excel字段的值
  84. for key in same_col.keys():
  85. for col in same_col[key]:
  86. df[col] = df[key]
  87. del_keys = set(df.columns) - set(cols_tran.keys())
  88. for key in del_keys:
  89. df.drop(key, axis=1, inplace=True)
  90. df = del_blank(df, ['wind_turbine_number'])
  91. df = df[df['time_stamp'].isna() == False]
  92. if self.trans_param.wind_name_exec and not self.trans_param.merge_columns:
  93. if valid_eval(self.trans_param.wind_name_exec):
  94. exec_str = f"df['wind_turbine_number'].apply(lambda wind_name: {self.trans_param.wind_name_exec} )"
  95. df['wind_turbine_number'] = eval(exec_str)
  96. self.save_to_tmp_csv(df)
  97. def save_to_tmp_csv(self, df):
  98. names = set(df['wind_turbine_number'].values)
  99. if names:
  100. trans_print("开始保存", str(names), "到临时文件")
  101. for name in names:
  102. self._save_to_tmp_csv_by_name(df[df['wind_turbine_number'] == name], name)
  103. del df
  104. trans_print("保存", str(names), "到临时文件成功, 风机数量", len(names))
  105. def merge_df(self, dir_path):
  106. all_files = read_excel_files(dir_path)
  107. df = pd.DataFrame()
  108. for file in all_files:
  109. now_df = read_file_to_df(file)
  110. now_df.dropna(subset=['time_stamp'], inplace=True)
  111. now_df.drop_duplicates(subset=['time_stamp'], inplace=True)
  112. now_df.set_index(keys=['time_stamp', 'wind_turbine_number'], inplace=True)
  113. df = pd.concat([df, now_df], axis=1)
  114. df.reset_index(inplace=True)
  115. self.df_save_to_tmp_file(df)
  116. return df
  117. def read_file_and_save_tmp(self):
  118. all_files = read_excel_files(self.pathsAndTable.get_excel_tmp_path())
  119. split_count = use_files_get_max_cpu_count(all_files)
  120. all_arrays = split_array(all_files, split_count)
  121. if self.trans_param.merge_columns:
  122. for index, arr in enumerate(all_arrays):
  123. try:
  124. with multiprocessing.Pool(split_count) as pool:
  125. pool.starmap(self.save_merge_data, [(ar,) for ar in arr])
  126. except Exception as e:
  127. trans_print(traceback.format_exc())
  128. message = "整理临时文件,系统返回错误:" + str(e)
  129. raise ValueError(message)
  130. update_trans_transfer_progress(self.pathsAndTable.batch_no, self.pathsAndTable.read_type,
  131. round(20 + 20 * (index + 1) / len(all_arrays), 2),
  132. self.pathsAndTable.save_db)
  133. dirs = [path.join(self.pathsAndTable.get_merge_tmp_path(), dir_name) for dir_name in
  134. listdir(self.pathsAndTable.get_merge_tmp_path())]
  135. dir_total_size = get_dir_size(dirs[0])
  136. split_count = max_file_size_get_max_cpu_count(dir_total_size)
  137. all_arrays = split_array(dirs, split_count)
  138. for index, arr in enumerate(all_arrays):
  139. try:
  140. with multiprocessing.Pool(split_count) as pool:
  141. pool.starmap(self.merge_df, [(ar,) for ar in arr])
  142. except Exception as e:
  143. trans_print(traceback.format_exc())
  144. message = "整理临时文件,系统返回错误:" + str(e)
  145. raise ValueError(message)
  146. update_trans_transfer_progress(self.pathsAndTable.batch_no, self.pathsAndTable.read_type,
  147. round(20 + 30 * (index + 1) / len(all_arrays), 2),
  148. self.pathsAndTable.save_db)
  149. else:
  150. for index, arr in enumerate(all_arrays):
  151. try:
  152. with multiprocessing.Pool(split_count) as pool:
  153. dfs = pool.starmap(self.read_excel_to_df, [(ar,) for ar in arr])
  154. for df in dfs:
  155. self.df_save_to_tmp_file(df)
  156. except Exception as e:
  157. trans_print(traceback.format_exc())
  158. message = "整理临时文件,系统返回错误:" + str(e)
  159. raise ValueError(message)
  160. update_trans_transfer_progress(self.pathsAndTable.batch_no, self.pathsAndTable.read_type,
  161. round(20 + 30 * (index + 1) / len(all_arrays), 2),
  162. self.pathsAndTable.save_db)
  163. def read_excel_to_df(self, file_path):
  164. read_cols = [v.split(",")[0] for k, v in self.trans_param.cols_tran.items() if v and not v.startswith("$")]
  165. trans_dict = {}
  166. for k, v in self.trans_param.cols_tran.items():
  167. if v and not str(v).startswith("$"):
  168. trans_dict[v] = k
  169. if self.trans_param.is_vertical_table:
  170. vertical_cols = self.trans_param.vertical_cols
  171. df = read_file_to_df(file_path, vertical_cols, trans_cols=self.trans_param.vertical_cols)
  172. df = df[df[self.trans_param.vertical_key].isin(read_cols)]
  173. df.rename(columns={self.trans_param.cols_tran['wind_turbine_number']: 'wind_turbine_number',
  174. self.trans_param.cols_tran['time_stamp']: 'time_stamp'}, inplace=True)
  175. df[self.trans_param.vertical_key] = df[self.trans_param.vertical_key].map(trans_dict).fillna(
  176. df[self.trans_param.vertical_key])
  177. return df
  178. else:
  179. trans_dict = dict()
  180. trans_cols = []
  181. for k, v in self.trans_param.cols_tran.items():
  182. if v and v.startswith("$") or v.find(",") > 0:
  183. trans_dict[v] = k
  184. if v.find("|") > -1:
  185. vs = v.split("|")
  186. trans_cols.extend(vs)
  187. else:
  188. trans_cols.append(v)
  189. trans_cols = list(set(trans_cols))
  190. if self.trans_param.merge_columns:
  191. df = read_file_to_df(file_path, trans_cols=trans_cols, not_find_header='ignore',
  192. resolve_col_prefix=self.trans_param.resolve_col_prefix)
  193. else:
  194. if self.trans_param.need_valid_cols:
  195. df = read_file_to_df(file_path, read_cols, trans_cols=trans_cols)
  196. else:
  197. df = read_file_to_df(file_path, trans_cols=trans_cols)
  198. # 处理列名前缀问题
  199. if self.trans_param.resolve_col_prefix:
  200. columns_dict = dict()
  201. if valid_eval(self.trans_param.resolve_col_prefix):
  202. for column in df.columns:
  203. columns_dict[column] = eval(self.trans_param.resolve_col_prefix)
  204. df.rename(columns=columns_dict, inplace=True)
  205. if self.trans_param.merge_columns:
  206. select_cols = [self.trans_param.cols_tran['wind_turbine_number'],
  207. self.trans_param.cols_tran['time_stamp'],
  208. 'wind_turbine_number', 'time_stamp']
  209. select_cols.extend(trans_cols)
  210. rename_dict = dict()
  211. wind_turbine_number_col = self.trans_param.cols_tran['wind_turbine_number']
  212. if wind_turbine_number_col.find("|") > -1:
  213. cols = wind_turbine_number_col.split("|")
  214. for col in cols:
  215. rename_dict[col] = 'wind_turbine_number'
  216. time_stamp_col = self.trans_param.cols_tran['time_stamp']
  217. if time_stamp_col.find("|") > -1:
  218. cols = time_stamp_col.split("|")
  219. for col in cols:
  220. rename_dict[col] = 'time_stamp'
  221. df.rename(columns=rename_dict, inplace=True)
  222. for col in df.columns:
  223. if col not in select_cols:
  224. del df[col]
  225. for k, v in trans_dict.items():
  226. if k.startswith("$file"):
  227. file = ".".join(path.basename(file_path).split(".")[0:-1])
  228. if k == "$file":
  229. ks = k.split("|")
  230. bool_contains = False
  231. for k_data in ks:
  232. if k_data in df.columns or v in df.columns:
  233. bool_contains = True
  234. if not bool_contains:
  235. df[v] = str(file)
  236. elif k.startswith("$file["):
  237. ks = k.split("|")
  238. bool_contains = False
  239. for k_data in ks:
  240. if k_data in df.columns or v in df.columns:
  241. bool_contains = True
  242. if not bool_contains:
  243. datas = str(ks[0].replace("$file", "").replace("[", "").replace("]", "")).split(":")
  244. if len(datas) != 2:
  245. raise Exception("字段映射出现错误 :" + str(trans_dict))
  246. df[v] = str(file[int(datas[0]):int(datas[1])]).strip()
  247. elif k.startswith("$file.split"):
  248. ks = k.split("|")
  249. bool_contains = False
  250. for k_data in ks:
  251. if k_data in df.columns or v in df.columns:
  252. bool_contains = True
  253. if not bool_contains:
  254. datas = str(ks[0]).replace("$file.split(", "").replace(")", "").split(",")
  255. split_str = str(datas[0])
  256. split_index = int(datas[1])
  257. df[v] = str(file.split(split_str)[split_index])
  258. elif k.find("$file_date") > 0:
  259. datas = str(k.split(",")[1].replace("$file_date", "").replace("[", "").replace("]", "")).split(":")
  260. if len(datas) != 2:
  261. raise Exception("字段映射出现错误 :" + str(trans_dict))
  262. file = ".".join(path.basename(file_path).split(".")[0:-1])
  263. date_str = str(file[int(datas[0]):int(datas[1])]).strip()
  264. df[v] = df[k.split(",")[0]].apply(lambda x: date_str + " " + str(x))
  265. elif k.startswith("$folder"):
  266. folder = file_path
  267. ks = k.split("|")
  268. bool_contains = False
  269. for k_data in ks:
  270. if k_data in df.columns or v in df.columns:
  271. bool_contains = True
  272. if not bool_contains:
  273. cengshu = int(str(ks[0].replace("$folder", "").replace("[", "").replace("]", "")))
  274. for i in range(cengshu):
  275. folder = path.dirname(folder)
  276. df[v] = str(str(folder).split(sep)[-1]).strip()
  277. elif k.startswith("$sheet_name"):
  278. df[v] = df['sheet_name']
  279. if 'time_stamp' not in df.columns:
  280. cols_trans = [i for i in self.trans_param.cols_tran['time_stamp'].split('|')]
  281. cols_dict = dict()
  282. for col in cols_trans:
  283. cols_dict[col] = 'time_stamp'
  284. df.rename(columns=cols_dict, inplace=True)
  285. if 'wind_turbine_number' not in df.columns:
  286. cols_trans = [i for i in self.trans_param.cols_tran['wind_turbine_number'].split('|')]
  287. cols_dict = dict()
  288. for col in cols_trans:
  289. cols_dict[col] = 'wind_turbine_number'
  290. df.rename(columns=cols_dict, inplace=True)
  291. return df
  292. def run(self):
  293. trans_print("开始保存数据到临时文件")
  294. begin = datetime.datetime.now()
  295. self.read_file_and_save_tmp()
  296. update_trans_transfer_progress(self.pathsAndTable.batch_no, self.pathsAndTable.read_type, 50,
  297. self.pathsAndTable.save_db)
  298. trans_print("保存数据到临时文件结束,耗时:", datetime.datetime.now() - begin)