123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488 |
- # -*- coding: utf-8 -*-
- # @Time : 2024/5/15
- # @Author : 魏志亮
- import datetime
- import multiprocessing
- import tempfile
- from etl.base.TranseParam import TranseParam
- from service.plt_service import get_all_wind, update_trans_status_error, update_trans_status_running, \
- update_trans_status_success
- from service.trans_service import creat_table_and_add_partition, rename_table, save_df_to_db, save_file_to_db
- from utils.file.trans_methods import *
- from utils.log.trans_log import logger
- from utils.zip.unzip import unzip, unrar
- class WindFarms(object):
- def __init__(self, name, batch_no=None, field_code=None, params: TranseParam = None, wind_full_name=None,
- schedule_exec=True):
- self.name = name
- self.batch_no = batch_no
- self.field_code = field_code
- self.wind_full_name = wind_full_name
- self.save_zip = False
- self.trans_param = params
- self.__exist_wind_names = multiprocessing.Manager().list()
- self.wind_col_trans = get_all_wind(self.field_code)
- self.batch_count = 50000
- self.save_path = None
- self.schedule_exec = schedule_exec
- self.lock = multiprocessing.Manager().Lock()
- self.statistics_map = multiprocessing.Manager().dict()
- def set_trans_param(self, params: TranseParam):
- self.trans_param = params
- read_path = str(params.read_path)
- if read_path.find(self.wind_full_name) == -1:
- message = "读取路径与配置路径不匹配:" + self.trans_param.read_path + ",配置文件为:" + self.wind_full_name
- update_trans_status_error(self.batch_no, self.trans_param.read_type, message, self.schedule_exec)
- raise ValueError(message)
- self.save_path = os.path.join(read_path[0:read_path.find(self.wind_full_name)], self.wind_full_name, "清理数据")
- def __params_valid(self, not_null_list=list()):
- for arg in not_null_list:
- if arg is None or arg == '':
- raise Exception("Invalid param set :" + arg)
- def __get_save_path(self):
- return os.path.join(self.save_path, self.batch_no, self.trans_param.read_type)
- def __get_save_tmp_path(self):
- return os.path.join(tempfile.gettempdir(), self.wind_full_name, self.batch_no, self.trans_param.read_type)
- def __get_excel_tmp_path(self):
- return os.path.join(self.__get_save_tmp_path(), 'excel_tmp' + os.sep)
- def __get_read_tmp_path(self):
- return os.path.join(self.__get_save_tmp_path(), 'read_tmp')
- def __df_save_to_tmp_file(self, df=pd.DataFrame(), file=None):
- if self.trans_param.is_vertical_table:
- pass
- else:
- # 转换字段
- if self.trans_param.cols_tran:
- cols_tran = self.trans_param.cols_tran
- real_cols_trans = dict()
- for k, v in cols_tran.items():
- if v and not v.startswith("$"):
- real_cols_trans[v] = k
- trans_print("包含转换字段,开始处理转换字段")
- df.rename(columns=real_cols_trans, inplace=True)
- del_keys = set(df.columns) - set(cols_tran.keys())
- for key in del_keys:
- df.drop(key, axis=1, inplace=True)
- df = del_blank(df, ['wind_turbine_number'])
- self.__save_to_tmp_csv(df, file)
- def __get_excel_files(self):
- if os.path.isfile(self.trans_param.read_path):
- all_files = [self.trans_param.read_path]
- else:
- all_files = read_files(self.trans_param.read_path)
- to_path = self.__get_excel_tmp_path()
- for file in all_files:
- if str(file).endswith("zip"):
- if str(file).endswith("csv.zip"):
- copy_to_new(file, file.replace(self.trans_param.read_path, to_path).replace("csv.zip", 'csv.gz'))
- else:
- is_success, e = unzip(file, file.replace(self.trans_param.read_path, to_path).split(".")[0])
- self.trans_param.has_zip = True
- if not is_success:
- raise e
- elif str(file).endswith("rar"):
- is_success, e = unrar(file, file.replace(self.trans_param.read_path, to_path).split(".")[0])
- self.trans_param.has_zip = True
- if not is_success:
- raise e
- else:
- copy_to_new(file, file.replace(self.trans_param.read_path, to_path))
- return read_excel_files(to_path)
- def __read_excel_to_df(self, file):
- read_cols = [v for k, v in self.trans_param.cols_tran.items() if v and not v.startswith("$")]
- trans_dict = {}
- for k, v in self.trans_param.cols_tran.items():
- if v and not str(v).startswith("$"):
- trans_dict[v] = k
- if self.trans_param.is_vertical_table:
- vertical_cols = self.trans_param.vertical_cols
- df = read_file_to_df(file, vertical_cols)
- df = df[df[self.trans_param.vertical_key].isin(read_cols)]
- df.rename(columns={self.trans_param.cols_tran['wind_turbine_number']: 'wind_turbine_number',
- self.trans_param.cols_tran['time_stamp']: 'time_stamp'}, inplace=True)
- df[self.trans_param.vertical_key] = df[self.trans_param.vertical_key].map(trans_dict).fillna(
- df[self.trans_param.vertical_key])
- return df
- else:
- trans_dict = dict()
- for k, v in self.trans_param.cols_tran.items():
- if v and v.startswith("$"):
- trans_dict[v] = k
- if self.trans_param.merge_columns:
- df = read_file_to_df(file)
- else:
- if self.trans_param.need_valid_cols:
- df = read_file_to_df(file, read_cols)
- else:
- df = read_file_to_df(file)
- # 处理列名前缀问题
- if self.trans_param.resolve_col_prefix:
- columns_dict = dict()
- for column in df.columns:
- columns_dict[column] = eval(self.trans_param.resolve_col_prefix)
- df.rename(columns=columns_dict, inplace=True)
- for k, v in trans_dict.items():
- if k.startswith("$file"):
- file_name = ".".join(os.path.basename(file).split(".")[0:-1])
- if k == "$file":
- df[v] = str(file_name)
- else:
- datas = str(k.replace("$file", "").replace("[", "").replace("]", "")).split(":")
- if len(datas) != 2:
- raise Exception("字段映射出现错误 :" + str(trans_dict))
- df[v] = str(file_name[int(datas[0]):int(datas[1])]).strip()
- elif k.startswith("$folder"):
- folder = file
- cengshu = int(str(k.replace("$folder", "").replace("[", "").replace("]", "")))
- for i in range(cengshu):
- folder = os.path.dirname(folder)
- df[v] = str(str(folder).split(os.sep)[-1]).strip()
- return df
- def _save_to_tmp_csv_by_name(self, df, name):
- save_name = str(name) + '.csv'
- save_path = os.path.join(self.__get_read_tmp_path(), save_name)
- create_file_path(save_path, is_file_path=True)
- with self.lock:
- if name in self.__exist_wind_names:
- contains_name = True
- else:
- contains_name = False
- self.__exist_wind_names.append(name)
- if contains_name:
- df.to_csv(save_path, index=False, encoding='utf8', mode='a',
- header=False)
- else:
- df.to_csv(save_path, index=False, encoding='utf8')
- def __save_to_tmp_csv(self, df, file):
- trans_print("开始保存", str(file), "到临时文件")
- names = set(df['wind_turbine_number'].values)
- with multiprocessing.Pool(6) as pool:
- pool.starmap(self._save_to_tmp_csv_by_name,
- [(df[df['wind_turbine_number'] == name], name) for name in names])
- del df
- trans_print("保存", str(names), "到临时文件成功, 风机数量", len(names))
- def __set_statistics_data(self, df):
- if not df.empty:
- min_date = pd.to_datetime(df['time_stamp']).min()
- max_date = pd.to_datetime(df['time_stamp']).max()
- with self.lock:
- if 'min_date' in self.statistics_map.keys():
- if self.statistics_map['min_date'] > min_date:
- self.statistics_map['min_date'] = min_date
- else:
- self.statistics_map['min_date'] = min_date
- if 'max_date' in self.statistics_map.keys():
- if self.statistics_map['max_date'] < max_date:
- self.statistics_map['max_date'] = max_date
- else:
- self.statistics_map['max_date'] = max_date
- if 'total_count' in self.statistics_map.keys():
- self.statistics_map['total_count'] = self.statistics_map['total_count'] + df.shape[0]
- else:
- self.statistics_map['total_count'] = df.shape[0]
- def save_statistics_file(self):
- save_path = os.path.join(os.path.dirname(self.__get_save_path()),
- self.trans_param.read_type + '_statistics.txt')
- create_file_path(save_path, is_file_path=True)
- with open(save_path, 'w', encoding='utf8') as f:
- f.write("总数据量:" + str(self.statistics_map['total_count']) + "\n")
- f.write("最小时间:" + str(self.statistics_map['min_date']) + "\n")
- f.write("最大时间:" + str(self.statistics_map['max_date']) + "\n")
- f.write("风机数量:" + str(len(read_excel_files(self.__get_read_tmp_path()))) + "\n")
- def save_to_csv(self, filename):
- df = read_file_to_df(filename)
- if self.trans_param.is_vertical_table:
- df = df.pivot_table(index=['time_stamp', 'wind_turbine_number'], columns=self.trans_param.vertical_key,
- values=self.trans_param.vertical_value,
- aggfunc='max')
- # 重置索引以得到普通的列
- df.reset_index(inplace=True)
- for k in self.trans_param.cols_tran.keys():
- if k not in df.columns:
- df[k] = None
- df = df[self.trans_param.cols_tran.keys()]
- # 添加年月日
- trans_print("包含时间字段,开始处理时间字段,添加年月日", filename)
- df['time_stamp'] = pd.to_datetime(df['time_stamp'])
- df['year'] = df['time_stamp'].dt.year
- df['month'] = df['time_stamp'].dt.month
- df['day'] = df['time_stamp'].dt.day
- df.sort_values(by='time_stamp', inplace=True)
- df['time_stamp'] = df['time_stamp'].apply(
- lambda x: x.strftime('%Y-%m-%d %H:%M:%S'))
- trans_print("处理时间字段结束")
- # 转化风机名称
- trans_print("开始转化风机名称")
- if self.trans_param.wind_name_exec:
- exec_str = f"df['wind_turbine_number'].apply(lambda wind_name: {self.trans_param.wind_name_exec} )"
- df['wind_turbine_number'] = eval(exec_str)
- df['wind_turbine_number'] = df['wind_turbine_number'].map(
- self.wind_col_trans).fillna(
- df['wind_turbine_number'])
- trans_print("转化风机名称结束")
- wind_col_name = str(df['wind_turbine_number'].values[0])
- if self.save_zip:
- save_path = os.path.join(self.__get_save_path(), str(wind_col_name) + '.csv.gz')
- else:
- save_path = os.path.join(self.__get_save_path(), str(wind_col_name) + '.csv')
- create_file_path(save_path, is_file_path=True)
- if self.save_zip:
- df.to_csv(save_path, compression='gzip', index=False, encoding='utf-8')
- else:
- df.to_csv(save_path, index=False, encoding='utf-8')
- self.__set_statistics_data(df)
- del df
- trans_print("保存" + str(filename) + ".csv成功")
- def read_all_files(self):
- # 读取文件
- try:
- all_files = self.__get_excel_files()
- trans_print('读取文件数量:', len(all_files))
- except Exception as e:
- logger.exception(e)
- message = "读取文件列表错误:" + self.trans_param.read_path + ",系统返回错误:" + str(e)
- update_trans_status_error(self.batch_no, self.trans_param.read_type, message, self.schedule_exec)
- raise e
- return all_files
- def read_file_and_save_tmp(self):
- all_files = read_excel_files(self.__get_save_tmp_path())
- if self.trans_param.merge_columns:
- dfs_list = list()
- index_keys = [self.trans_param.cols_tran['time_stamp']]
- wind_col = self.trans_param.cols_tran['wind_turbine_number']
- if str(wind_col).startswith("$"):
- wind_col = 'wind_turbine_number'
- index_keys.append(wind_col)
- df_map = dict()
- with multiprocessing.Pool(6) as pool:
- dfs = pool.starmap(self.__read_excel_to_df, [(file,) for file in all_files])
- for df in dfs:
- key = '-'.join(df.columns)
- if key in df_map.keys():
- df_map[key] = pd.concat([df_map[key], df])
- else:
- df_map[key] = df
- for k, df in df_map.items():
- df.drop_duplicates(inplace=True)
- df.set_index(keys=index_keys, inplace=True)
- df = df[~df.index.duplicated(keep='first')]
- dfs_list.append(df)
- df = pd.concat(dfs_list, axis=1)
- df.reset_index(inplace=True)
- # names = set(df[wind_col].values)
- try:
- # for name in names:
- # self.__df_save_to_tmp_file(df[df[wind_col] == name], "")
- self.__df_save_to_tmp_file(df, "")
- except Exception as e:
- logger.exception(e)
- message = "合并列出现错误:" + str(e)
- update_trans_status_error(self.batch_no, self.trans_param.read_type, message, self.schedule_exec)
- raise e
- else:
- for file in all_files:
- try:
- self.__df_save_to_tmp_file(self.__read_excel_to_df(file), file)
- except Exception as e:
- logger.exception(e)
- message = "读取文件错误:" + file + ",系统返回错误:" + str(e)
- update_trans_status_error(self.batch_no, self.trans_param.read_type, message, self.schedule_exec)
- raise e
- def mutiprocessing_to_save_file(self):
- # 开始保存到正式文件
- trans_print("开始保存到excel文件")
- all_tmp_files = read_excel_files(self.__get_read_tmp_path())
- try:
- with multiprocessing.Pool(6) as pool:
- pool.starmap(self.save_to_csv, [(file,) for file in all_tmp_files])
- except Exception as e:
- logger.exception(e)
- message = "保存文件错误,系统返回错误:" + str(e)
- update_trans_status_error(self.batch_no, self.trans_param.read_type, message, self.schedule_exec)
- raise e
- trans_print("结束保存到excel文件")
- def mutiprocessing_to_save_db(self):
- # 开始保存到SQL文件
- trans_print("开始保存到数据库文件")
- all_saved_files = read_excel_files(self.__get_save_path())
- table_name = self.batch_no + "_" + self.trans_param.read_type
- creat_table_and_add_partition(table_name, len(all_saved_files), self.trans_param.read_type)
- try:
- with multiprocessing.Pool(6) as pool:
- pool.starmap(save_file_to_db,
- [(table_name, file, self.batch_count) for file in all_saved_files])
- except Exception as e:
- logger.exception(e)
- message = "保存到数据库错误,系统返回错误:" + str(e)
- update_trans_status_error(self.batch_no, self.trans_param.read_type, message, self.schedule_exec)
- raise e
- trans_print("结束保存到数据库文件")
- def _rename_file(self):
- save_path = self.__get_save_path()
- files = os.listdir(save_path)
- files.sort(key=lambda x: int(str(x).split(os.sep)[-1].split(".")[0][1:]))
- for index, file in enumerate(files):
- file_path = os.path.join(save_path, 'F' + str(index + 1).zfill(3) + ".csv.gz")
- os.rename(os.path.join(save_path, file), file_path)
- def delete_batch_files(self):
- trans_print("开始删除已存在的批次文件夹")
- if os.path.exists(self.__get_save_path()):
- shutil.rmtree(self.__get_save_path())
- trans_print("删除已存在的批次文件夹")
- def delete_tmp_files(self):
- trans_print("开始删除临时文件夹")
- if os.path.exists(self.__get_excel_tmp_path()):
- shutil.rmtree(self.__get_excel_tmp_path())
- if os.path.exists(self.__get_read_tmp_path()):
- shutil.rmtree(self.__get_read_tmp_path())
- if os.path.exists(self.__get_save_tmp_path()):
- shutil.rmtree(self.__get_save_tmp_path())
- trans_print("删除临时文件夹删除成功")
- def delete_batch_db(self):
- table_name = "_".join([self.batch_no, self.trans_param.read_type])
- renamed_table_name = "del_" + table_name + "_" + datetime.datetime.now().strftime('%Y%m%d%H%M%S')
- rename_table(table_name, renamed_table_name)
- def run(self, step=0, end=3):
- begin = datetime.datetime.now()
- trans_print("开始执行", self.name, self.trans_param.read_type)
- update_trans_status_running(self.batch_no, self.trans_param.read_type, self.schedule_exec)
- if step <= 0 and end >= 0:
- tmp_begin = datetime.datetime.now()
- trans_print("开始初始化字段")
- self.delete_batch_files()
- self.delete_batch_db()
- self.__params_valid([self.name, self.batch_no, self.field_code, self.save_path, self.trans_param.read_type,
- self.trans_param.read_path, self.wind_full_name])
- if self.trans_param.resolve_col_prefix:
- column = "测试"
- eval(self.trans_param.resolve_col_prefix)
- if self.trans_param.wind_name_exec:
- wind_name = "测试"
- eval(self.trans_param.wind_name_exec)
- trans_print("初始化字段结束,耗时:", str(datetime.datetime.now() - tmp_begin), ",总耗时:",
- str(datetime.datetime.now() - begin))
- if step <= 1 and end >= 1:
- # 更新运行状态到运行中
- tmp_begin = datetime.datetime.now()
- self.delete_tmp_files()
- trans_print("开始保存到临时路径")
- # 开始读取数据并分类保存临时文件
- self.read_all_files()
- trans_print("保存到临时路径结束,耗时:", str(datetime.datetime.now() - tmp_begin), ",总耗时:",
- str(datetime.datetime.now() - begin))
- if step <= 2 and end >= 2:
- # 更新运行状态到运行中
- tmp_begin = datetime.datetime.now()
- trans_print("开始保存到临时文件")
- # 开始读取数据并分类保存临时文件
- self.read_file_and_save_tmp()
- trans_print("保存到临时文件结束,耗时:", str(datetime.datetime.now() - tmp_begin), ",总耗时:",
- str(datetime.datetime.now() - begin))
- if step <= 3 and end >= 3:
- tmp_begin = datetime.datetime.now()
- trans_print("开始保存到文件")
- self.mutiprocessing_to_save_file()
- self.save_statistics_file()
- trans_print("保存到文件结束,耗时:", str(datetime.datetime.now() - tmp_begin), ",总耗时:",
- str(datetime.datetime.now() - begin))
- if step <= 4 and end >= 4:
- tmp_begin = datetime.datetime.now()
- trans_print("开始保存到数据库")
- self.mutiprocessing_to_save_db()
- trans_print("保存到数据库结束,耗时:", str(datetime.datetime.now() - tmp_begin), ",总耗时:",
- str(datetime.datetime.now() - begin))
- # 如果end==0 则说明只是进行了验证
- if end != 0:
- update_trans_status_success(self.batch_no, self.trans_param.read_type,
- len(read_excel_files(self.__get_read_tmp_path())), self.schedule_exec)
- trans_print("开始执行", self.name, self.trans_param.read_type, ",,总耗时:",
- str(datetime.datetime.now() - begin))
- self.delete_tmp_files()
|