123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- import multiprocessing
- import os
- import matplotlib
- matplotlib.use('Agg')
- matplotlib.rcParams['font.family'] = 'SimHei'
- matplotlib.rcParams['font.sans-serif'] = ['SimHei']
- import numpy as np
- from matplotlib import pyplot as plt
- from utils.file.trans_methods import read_file_to_df
- from utils.file.trans_methods import read_excel_files
- import pandas as pd
- def select_data(file, curve_wv, curve_ap, save_path):
- name = os.path.basename(file).split("@")[0]
- try:
- df = read_file_to_df(file)
- df.dropna(subset=['有功功率 kW均值', '风速 m/s均值', '有功功率设定 kW均值'], inplace=True)
- ap_gt_0_df = df[df['有功功率 kW均值'] > 0]
- ap_le_0_df = df[df['有功功率 kW均值'] <= 0]
- ap_le_0_df["marker"] = -1
- ap = ap_gt_0_df['有功功率 kW均值'].values
- wv = ap_gt_0_df['风速 m/s均值'].values
- ap_set = ap_gt_0_df['有功功率设定 kW均值'].values
- ap_gt_0_in = [0] * ap_gt_0_df.shape[0]
- for i in range(len(ap_set)):
- wind_speed = wv[i]
- active_power = ap[i]
- active_power_set = ap_set[i]
- if active_power >= 2200 - 200:
- ap_gt_0_in[i] = 1
- else:
- diffs = np.abs(curve_wv - wind_speed)
- # 找到差值最小的索引和对应的差值
- minDiff, idx = np.min(diffs), np.argmin(diffs)
- # 使用找到的索引获取对应的值
- closestValue = curve_ap[idx]
- if active_power - closestValue >= -100:
- ap_gt_0_in[i] = 1
- ap_gt_0_df['marker'] = ap_gt_0_in
- df = pd.concat([ap_gt_0_df, ap_le_0_df])
- df.to_csv(os.path.join(save_path, name + '.csv'), index=False, encoding='utf-8')
- df = df[['时间', '风速 m/s均值', '有功功率 kW均值', '有功功率设定 kW均值', 'marker']]
- df = df[df['marker'] == 1]
- x = df['风速 m/s均值'].values
- y = df['有功功率 kW均值'].values
- # 使用scatter函数绘制散点图
- if not df.empty:
- plt.scatter(x, y, s=10, c='blue')
- # 添加标题和坐标轴标签
- plt.title(name)
- plt.xlabel('风速均值')
- plt.ylabel('有功功率均值')
- # 保存
- plt.savefig(os.path.join(save_path, name + '均值.png'))
- except Exception as e:
- print(os.path.basename(file), "出错", str(e))
- raise e
- if __name__ == '__main__':
- wind_power_df = read_file_to_df(r"D:\中能智能\matlib计算相关\标记derating\PV_Curve.csv")
- curve_wv = wind_power_df["风速"].values
- curve_ap = wind_power_df["功率"].values
- all_files = read_excel_files(r"Z:\collection_data\1进行中\诺木洪风电场-甘肃-华电\清理数据\min-666")
- save_path = r"D:\trans_data\诺木洪\清理数据\min-666-derating"
- # save_path = r"Z:\collection_data\1进行中\诺木洪风电场-甘肃-华电\清理数据\min-666-marker"
- # for file in all_files:
- with multiprocessing.Pool(10) as pool:
- pool.starmap(select_data, [(i, curve_wv, curve_ap, save_path) for i in all_files])
|