123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- import datetime
- import json
- import multiprocessing
- from os.path import basename, dirname
- import pandas as pd
- from service.trans_service import get_wave_conf, save_file_to_db, save_df_to_db
- from utils.file.trans_methods import *
- from utils.systeminfo.sysinfo import get_available_cpu_count_with_percent
- class WaveTrans(object):
- def __init__(self, field_code, read_path, save_path: str):
- self.field_code = field_code
- self.read_path = read_path
- self.save_path = save_path
- self.begin = datetime.datetime.now()
- # def get_data(self, file_path):
- # df = pd.read_csv(file_path, encoding=detect_file_encoding(file_path), header=None)
- # data = [i for i in df[0].values]
- # filename = os.path.basename(file_path)
- # wind_num = filename.split('_')[1]
- # cedian = '齿轮箱' + filename.split('_齿轮箱')[1].split('_Time')[0]
- # cedian_time = filename.split('风机_')[1].split('_齿轮箱')[0].replace('_', ':')
- # name_tmp = 'Time_' + filename.split('Time_')[1].split('_cms')[0]
- # pinlv = name_tmp[0:name_tmp.rfind('_')]
- # zhuansu = name_tmp[name_tmp.rfind('_') + 1:]
- #
- # df = pd.DataFrame()
- # df['风机编号'] = [wind_num, wind_num]
- # df['时间'] = [cedian_time, cedian_time]
- # df['频率'] = [pinlv, pinlv]
- # df['测点'] = ['转速', cedian]
- # df['数据'] = [[float(zhuansu)], data]
- #
- # return df
- def get_data_exec(self, func_code, arg):
- exec(func_code)
- return locals()['get_data'](arg)
- def run(self, map_dict=dict()):
- all_files = read_files(self.read_path, ['csv'])
- print(len)
- # 最大取系统cpu的 1/2
- split_count = get_available_cpu_count_with_percent(1 / 2)
- wave_conf = get_wave_conf(self.field_code)
- base_param_exec = wave_conf['base_param_exec']
- map_dict = {}
- if base_param_exec:
- base_param_exec = base_param_exec.replace('\r\n', '\n').replace('\t', ' ')
- print(base_param_exec)
- # exec(base_param_exec)
- mesure_poins = [key for key, value in wave_conf.items() if str(key).startswith('conf_') and value]
- for point in mesure_poins:
- map_dict[wave_conf[point]] = point
- with multiprocessing.Pool(split_count) as pool:
- file_datas = pool.starmap(self.get_data_exec, [(base_param_exec, i) for i in all_files])
- # for file_data in file_datas:
- # wind_num, data_time, frequency, rotational_speed, measurementp_name, data = file_data[0], file_data[1], \
- # file_data[2], file_data[3], file_data[4],
- result_list = list()
- for file_data in file_datas:
- wind_turbine_name, time_stamp, sampling_frequency, rotational_speed, mesure_point_name, mesure_data = \
- file_data[0], file_data[1], file_data[2], file_data[3], file_data[4], file_data[5]
- result_list.append(
- [wind_turbine_name, time_stamp, sampling_frequency, 'rotational_speed', [float(rotational_speed)]])
- result_list.append(
- [wind_turbine_name, time_stamp, sampling_frequency, mesure_point_name, mesure_data])
- df = pd.DataFrame(result_list,
- columns=['wind_turbine_name', 'time_stamp', 'sampling_frequency', 'mesure_point_name',
- 'mesure_data'])
- df['mesure_point_name'] = df['mesure_point_name'].map(map_dict).fillna(df['mesure_point_name'])
- df['mesure_data'] = df['mesure_data'].apply(lambda x: json.dumps(x))
- save_df_to_db('SKF001_wave', df, batch_count=1000)
- print("总耗时:", datetime.datetime.now() - self.begin)
|