123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 |
- import datetime
- import os
- from multiprocessing import Pool
- import chardet
- import pandas as pd
- # 获取文件编码
- def detect_file_encoding(filename):
- # 读取文件的前1000个字节(足够用于大多数编码检测)
- with open(filename, 'rb') as f:
- rawdata = f.read(1000)
- result = chardet.detect(rawdata)
- encoding = result['encoding']
- if encoding is None:
- encoding = 'gb18030'
- if encoding and encoding.lower() == 'gb2312' or encoding.lower().startswith("windows"):
- encoding = 'gb18030'
- return encoding
- # 读取数据到df
- def read_file_to_df(file_path, read_cols=list(), header=0):
- df = pd.DataFrame()
- if str(file_path).lower().endswith("csv") or str(file_path).lower().endswith("gz"):
- encoding = detect_file_encoding(file_path)
- end_with_gz = str(file_path).lower().endswith("gz")
- if read_cols:
- if end_with_gz:
- df = pd.read_csv(file_path, encoding=encoding, usecols=read_cols, compression='gzip', header=header)
- else:
- df = pd.read_csv(file_path, encoding=encoding, usecols=read_cols, header=header, on_bad_lines='warn')
- else:
- if end_with_gz:
- df = pd.read_csv(file_path, encoding=encoding, compression='gzip', header=header)
- else:
- df = pd.read_csv(file_path, encoding=encoding, header=header, on_bad_lines='warn')
- else:
- xls = pd.ExcelFile(file_path)
- # 获取所有的sheet名称
- sheet_names = xls.sheet_names
- for sheet in sheet_names:
- if read_cols:
- df = pd.concat([df, pd.read_excel(xls, sheet_name=sheet, header=header, usecols=read_cols)])
- else:
- df = pd.concat([df, pd.read_excel(xls, sheet_name=sheet, header=header)])
- return df
- def __build_directory_dict(directory_dict, path, filter_types=None):
- # 遍历目录下的所有项
- for item in os.listdir(path):
- item_path = os.path.join(path, item)
- if os.path.isdir(item_path):
- __build_directory_dict(directory_dict, item_path, filter_types=filter_types)
- elif os.path.isfile(item_path):
- if path not in directory_dict:
- directory_dict[path] = []
- if filter_types is None or len(filter_types) == 0:
- directory_dict[path].append(item_path)
- elif str(item_path).split(".")[-1] in filter_types:
- if str(item_path).count("~$") == 0:
- directory_dict[path].append(item_path)
- # 读取所有文件
- # 读取路径下所有的excel文件
- def read_excel_files(read_path):
- directory_dict = {}
- __build_directory_dict(directory_dict, read_path, filter_types=['xls', 'xlsx', 'csv', 'gz'])
- return [path for paths in directory_dict.values() for path in paths if path]
- # 创建路径
- def create_file_path(path, is_file_path=False):
- if is_file_path:
- path = os.path.dirname(path)
- if not os.path.exists(path):
- os.makedirs(path, exist_ok=True)
- def read_status(status_path):
- all_files = read_excel_files(status_path)
- with Pool(20) as pool:
- dfs = pool.starmap(read_file_to_df, [(file, ['设备名称', '状态码', '开始时间'], 2) for file in all_files])
- df = pd.concat(dfs)
- df = df[df['状态码'].isin([3, 5])]
- df['开始时间'] = pd.to_datetime(df['开始时间'])
- df['处理后时间'] = (df['开始时间'] + pd.Timedelta(minutes=10)).apply(
- lambda x: f"{x.year}-{str(x.month).zfill(2)}-{str(x.day).zfill(2)} {str(x.hour).zfill(2)}:{x.minute // 10}0:00")
- df['处理后时间'] = pd.to_datetime(df['处理后时间'])
- df = df[(df['处理后时间'] >= '2023-09-01 00:00:00')]
- df[df['处理后时间'] >= '2024-09-01 00:00:00'] = '2024-09-01 00:00:00'
- df.sort_values(by=['设备名称', '处理后时间'], inplace=True)
- return df
- def read_fault_data(fault_path):
- all_files = read_excel_files(fault_path)
- with Pool(20) as pool:
- dfs = pool.starmap(read_file_to_df, [(file, ['设备名称', '故障开始时间'], 2) for file in all_files])
- df = pd.concat(dfs)
- df = df[df['设备名称'].str.startswith("#")]
- df['故障开始时间'] = pd.to_datetime(df['故障开始时间'])
- df['处理后故障开始时间'] = (df['故障开始时间'] + pd.Timedelta(minutes=10)).apply(
- lambda x: f"{x.year}-{str(x.month).zfill(2)}-{str(x.day).zfill(2)} {str(x.hour).zfill(2)}:{x.minute // 10}0:00")
- df['处理后故障开始时间'] = pd.to_datetime(df['处理后故障开始时间'])
- df = df[(df['处理后故障开始时间'] >= '2023-09-01 00:00:00') & (df['处理后故障开始时间'] < '2024-09-01 00:00:00')]
- df.sort_values(by=['设备名称', '处理后故障开始时间'], inplace=True)
- return df
- def read_10min_data(data_path):
- all_files = read_excel_files(data_path)
- with Pool(20) as pool:
- dfs = pool.starmap(read_file_to_df,
- [(file, ['设备名称', '时间', '平均风速(m/s)', '平均网侧有功功率(kW)'], 1) for file in all_files])
- df = pd.concat(dfs)
- df['时间'] = pd.to_datetime(df['时间'])
- df = df[(df['时间'] >= '2023-09-01 00:00:00') & (df['时间'] < '2024-09-01 00:00:00')]
- df.sort_values(by=['设备名称', '时间'], inplace=True)
- return df
- def select_data_and_save(name, fault_df, origin_df):
- df = pd.DataFrame()
- for i in range(fault_df.shape[0]):
- fault = fault_df.iloc[i]
- con1 = origin_df['时间'] >= fault['处理后故障开始时间']
- con2 = origin_df['时间'] <= fault['结束时间']
- df = pd.concat([df, origin_df[con1 & con2]])
- name = name.replace('#', 'F')
- df.drop_duplicates(inplace=True)
- df.to_csv(save_path + os.sep + name + '.csv', index=False, encoding='utf8')
- if __name__ == '__main__':
- base_path = r'/data/download/白玉山/需要整理的数据'
- save_path = base_path + os.sep + 'sele_data_202409261135'
- create_file_path(save_path)
- status_df = read_status(base_path + os.sep + '设备状态')
- fault_df = read_fault_data(base_path + os.sep + '故障')
- data_df = read_10min_data(base_path + os.sep + '十分钟')
- status_df.to_csv(base_path + os.sep + '设备状态' + '.csv', index=False, encoding='utf8')
- fault_df.to_csv(base_path + os.sep + '故障' + '.csv', index=False, encoding='utf8')
- data_df.to_csv(base_path + os.sep + '十分钟' + '.csv', index=False, encoding='utf8')
- print(status_df.shape)
- print(fault_df.shape)
- print(data_df.shape)
- fault_list = list()
- for i in range(fault_df.shape[0]):
- data = fault_df.iloc[i]
- con1 = status_df['设备名称'] == data['设备名称']
- con2 = status_df['处理后时间'] >= data['处理后故障开始时间']
- fault_list.append(status_df[con1 & con2]['处理后时间'].min())
- fault_df['结束时间'] = fault_list
- status_df.to_csv(base_path + os.sep + '设备状态' + '.csv', index=False, encoding='utf8')
- fault_df.to_csv(base_path + os.sep + '故障' + '.csv', index=False, encoding='utf8')
- data_df.to_csv(base_path + os.sep + '十分钟' + '.csv', index=False, encoding='utf8')
- names = set(fault_df['设备名称'])
- fault_map = dict()
- data_map = dict()
- for name in names:
- fault_map[name] = fault_df[fault_df['设备名称'] == name]
- data_map[name] = data_df[data_df['设备名称'] == name]
- with Pool(20) as pool:
- pool.starmap(select_data_and_save, [(name, fault_map[name], data_map[name]) for name in names])
|