WindFarms.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508
  1. # -*- coding: utf-8 -*-
  2. # @Time : 2024/5/15
  3. # @Author : 魏志亮
  4. import datetime
  5. import multiprocessing
  6. import tempfile
  7. import traceback
  8. from etl.base.TranseParam import TranseParam
  9. from service.plt_service import get_all_wind, update_trans_status_error, update_trans_status_running, \
  10. update_trans_status_success
  11. from service.trans_service import creat_table_and_add_partition, rename_table, save_file_to_db, drop_table
  12. from utils.file.trans_methods import *
  13. from utils.zip.unzip import unzip, unrar, get_desc_path
  14. class WindFarms(object):
  15. def __init__(self, batch_no=None, field_code=None, params: TranseParam = None, wind_full_name=None,
  16. save_db=True, header=0):
  17. self.batch_no = batch_no
  18. self.field_code = field_code
  19. self.wind_full_name = wind_full_name
  20. self.save_zip = False
  21. self.trans_param = params
  22. self.exist_wind_names = multiprocessing.Manager().list()
  23. self.wind_col_trans = get_all_wind(self.field_code)
  24. self.batch_count = 50000
  25. self.save_path = None
  26. self.save_db = save_db
  27. self.lock = multiprocessing.Manager().Lock()
  28. self.statistics_map = multiprocessing.Manager().dict()
  29. self.header = header
  30. def set_trans_param(self, params: TranseParam):
  31. self.trans_param = params
  32. read_path = str(params.read_path)
  33. if read_path.find(self.wind_full_name) == -1:
  34. message = "读取路径与配置路径不匹配:" + self.trans_param.read_path + ",配置文件为:" + self.wind_full_name
  35. update_trans_status_error(self.batch_no, self.trans_param.read_type, message, self.save_db)
  36. raise ValueError(message)
  37. self.save_path = os.path.join(read_path[0:read_path.find(self.wind_full_name)], self.wind_full_name, "清理数据")
  38. def params_valid(self, not_null_list=list()):
  39. for arg in not_null_list:
  40. if arg is None or arg == '':
  41. raise Exception("Invalid param set :" + arg)
  42. def get_save_path(self):
  43. return os.path.join(self.save_path, self.batch_no, self.trans_param.read_type)
  44. def get_save_tmp_path(self):
  45. return os.path.join(tempfile.gettempdir(), self.wind_full_name, self.batch_no, self.trans_param.read_type)
  46. def get_excel_tmp_path(self):
  47. return os.path.join(self.get_save_tmp_path(), 'excel_tmp' + os.sep)
  48. def get_read_tmp_path(self):
  49. return os.path.join(self.get_save_tmp_path(), 'read_tmp')
  50. def df_save_to_tmp_file(self, df=pd.DataFrame(), file=None):
  51. if self.trans_param.is_vertical_table:
  52. pass
  53. else:
  54. # 转换字段
  55. if self.trans_param.cols_tran:
  56. cols_tran = self.trans_param.cols_tran
  57. real_cols_trans = dict()
  58. for k, v in cols_tran.items():
  59. if v and not v.startswith("$"):
  60. real_cols_trans[v] = k
  61. trans_print("包含转换字段,开始处理转换字段")
  62. df.rename(columns=real_cols_trans, inplace=True)
  63. del_keys = set(df.columns) - set(cols_tran.keys())
  64. for key in del_keys:
  65. df.drop(key, axis=1, inplace=True)
  66. df = del_blank(df, ['wind_turbine_number'])
  67. df = df[df['time_stamp'].isna() == False]
  68. if self.trans_param.wind_name_exec:
  69. exec_str = f"df['wind_turbine_number'].apply(lambda wind_name: {self.trans_param.wind_name_exec} )"
  70. df['wind_turbine_number'] = eval(exec_str)
  71. self.save_to_tmp_csv(df, file)
  72. def get_and_remove(self, file, thead_local=None):
  73. to_path = self.get_excel_tmp_path()
  74. if str(file).endswith("zip"):
  75. if str(file).endswith("csv.zip"):
  76. copy_to_new(file, file.replace(self.trans_param.read_path, to_path).replace("csv.zip", 'csv.gz'))
  77. else:
  78. desc_path = file.replace(self.trans_param.read_path, to_path)
  79. is_success, e = unzip(file, get_desc_path(desc_path))
  80. self.trans_param.has_zip = True
  81. if not is_success:
  82. # raise e
  83. pass
  84. elif str(file).endswith("rar"):
  85. desc_path = file.replace(self.trans_param.read_path, to_path)
  86. is_success, e = unrar(file, get_desc_path(desc_path))
  87. self.trans_param.has_zip = True
  88. if not is_success:
  89. # raise e
  90. pass
  91. else:
  92. copy_to_new(file, file.replace(self.trans_param.read_path, to_path))
  93. def read_excel_to_df(self, file_path):
  94. read_cols = [v.split(",")[0] for k, v in self.trans_param.cols_tran.items() if v and not v.startswith("$")]
  95. trans_dict = {}
  96. for k, v in self.trans_param.cols_tran.items():
  97. if v and not str(v).startswith("$"):
  98. trans_dict[v] = k
  99. if self.trans_param.is_vertical_table:
  100. vertical_cols = self.trans_param.vertical_cols
  101. df = read_file_to_df(file_path, vertical_cols, header=self.header)
  102. df = df[df[self.trans_param.vertical_key].isin(read_cols)]
  103. df.rename(columns={self.trans_param.cols_tran['wind_turbine_number']: 'wind_turbine_number',
  104. self.trans_param.cols_tran['time_stamp']: 'time_stamp'}, inplace=True)
  105. df[self.trans_param.vertical_key] = df[self.trans_param.vertical_key].map(trans_dict).fillna(
  106. df[self.trans_param.vertical_key])
  107. return df
  108. else:
  109. trans_dict = dict()
  110. for k, v in self.trans_param.cols_tran.items():
  111. if v and v.startswith("$") or v.find(",") > 0:
  112. trans_dict[v] = k
  113. if self.trans_param.merge_columns:
  114. df = read_file_to_df(file_path, header=self.header)
  115. else:
  116. if self.trans_param.need_valid_cols:
  117. df = read_file_to_df(file_path, read_cols, header=self.header)
  118. else:
  119. df = read_file_to_df(file_path, header=self.header)
  120. # 处理列名前缀问题
  121. if self.trans_param.resolve_col_prefix:
  122. columns_dict = dict()
  123. for column in df.columns:
  124. columns_dict[column] = eval(self.trans_param.resolve_col_prefix)
  125. df.rename(columns=columns_dict, inplace=True)
  126. for k, v in trans_dict.items():
  127. if k.startswith("$file"):
  128. file = ".".join(os.path.basename(file_path).split(".")[0:-1])
  129. if k == "$file":
  130. df[v] = str(file)
  131. elif k.startswith("$file["):
  132. datas = str(k.replace("$file", "").replace("[", "").replace("]", "")).split(":")
  133. if len(datas) != 2:
  134. raise Exception("字段映射出现错误 :" + str(trans_dict))
  135. df[v] = str(file[int(datas[0]):int(datas[1])]).strip()
  136. elif k.find("$file_date") > 0:
  137. datas = str(k.split(",")[1].replace("$file_date", "").replace("[", "").replace("]", "")).split(":")
  138. if len(datas) != 2:
  139. raise Exception("字段映射出现错误 :" + str(trans_dict))
  140. date_str = str(file[int(datas[0]):int(datas[1])]).strip()
  141. df[v] = df[k.split(",")[0]].apply(lambda x: date_str + " " + str(x))
  142. elif k.startswith("$folder"):
  143. folder = file_path
  144. cengshu = int(str(k.replace("$folder", "").replace("[", "").replace("]", "")))
  145. for i in range(cengshu):
  146. folder = os.path.dirname(folder)
  147. df[v] = str(str(folder).split(os.sep)[-1]).strip()
  148. return df
  149. def _save_to_tmp_csv_by_name(self, df, name):
  150. save_name = str(name) + '.csv'
  151. save_path = os.path.join(self.get_read_tmp_path(), save_name)
  152. create_file_path(save_path, is_file_path=True)
  153. with self.lock:
  154. if name in self.exist_wind_names:
  155. contains_name = True
  156. else:
  157. contains_name = False
  158. self.exist_wind_names.append(name)
  159. if contains_name:
  160. df.to_csv(save_path, index=False, encoding='utf8', mode='a',
  161. header=False)
  162. else:
  163. df.to_csv(save_path, index=False, encoding='utf8')
  164. def save_to_tmp_csv(self, df, file):
  165. trans_print("开始保存", str(file), "到临时文件")
  166. names = set(df['wind_turbine_number'].values)
  167. with multiprocessing.Pool(6) as pool:
  168. pool.starmap(self._save_to_tmp_csv_by_name,
  169. [(df[df['wind_turbine_number'] == name], name) for name in names])
  170. del df
  171. trans_print("保存", str(names), "到临时文件成功, 风机数量", len(names))
  172. def set_statistics_data(self, df):
  173. if not df.empty:
  174. min_date = pd.to_datetime(df['time_stamp']).min()
  175. max_date = pd.to_datetime(df['time_stamp']).max()
  176. with self.lock:
  177. if 'min_date' in self.statistics_map.keys():
  178. if self.statistics_map['min_date'] > min_date:
  179. self.statistics_map['min_date'] = min_date
  180. else:
  181. self.statistics_map['min_date'] = min_date
  182. if 'max_date' in self.statistics_map.keys():
  183. if self.statistics_map['max_date'] < max_date:
  184. self.statistics_map['max_date'] = max_date
  185. else:
  186. self.statistics_map['max_date'] = max_date
  187. if 'total_count' in self.statistics_map.keys():
  188. self.statistics_map['total_count'] = self.statistics_map['total_count'] + df.shape[0]
  189. else:
  190. self.statistics_map['total_count'] = df.shape[0]
  191. def save_statistics_file(self):
  192. save_path = os.path.join(os.path.dirname(self.get_save_path()),
  193. self.trans_param.read_type + '_statistics.txt')
  194. create_file_path(save_path, is_file_path=True)
  195. with open(save_path, 'w', encoding='utf8') as f:
  196. f.write("总数据量:" + str(self.statistics_map['total_count']) + "\n")
  197. f.write("最小时间:" + str(self.statistics_map['min_date']) + "\n")
  198. f.write("最大时间:" + str(self.statistics_map['max_date']) + "\n")
  199. f.write("风机数量:" + str(len(read_excel_files(self.get_read_tmp_path()))) + "\n")
  200. def save_to_csv(self, filename):
  201. df = read_file_to_df(filename)
  202. if self.trans_param.is_vertical_table:
  203. df = df.pivot_table(index=['time_stamp', 'wind_turbine_number'], columns=self.trans_param.vertical_key,
  204. values=self.trans_param.vertical_value,
  205. aggfunc='max')
  206. # 重置索引以得到普通的列
  207. df.reset_index(inplace=True)
  208. for k in self.trans_param.cols_tran.keys():
  209. if k not in df.columns:
  210. df[k] = None
  211. df = df[self.trans_param.cols_tran.keys()]
  212. # 转化风机名称
  213. trans_print("开始转化风机名称")
  214. # if self.trans_param.wind_name_exec:
  215. # exec_str = f"df['wind_turbine_number'].apply(lambda wind_name: {self.trans_param.wind_name_exec} )"
  216. # df['wind_turbine_number'] = eval(exec_str)
  217. df['wind_turbine_number'] = df['wind_turbine_number'].astype('str')
  218. df['wind_turbine_number'] = df['wind_turbine_number'].map(
  219. self.wind_col_trans).fillna(
  220. df['wind_turbine_number'])
  221. wind_col_name = str(df['wind_turbine_number'].values[0])
  222. # 添加年月日
  223. trans_print(wind_col_name, "包含时间字段,开始处理时间字段,添加年月日", filename)
  224. trans_print(wind_col_name, "时间原始大小:", df.shape[0])
  225. df = df[(df['time_stamp'].str.find('-') > 0) & (df['time_stamp'].str.find(':') > 0)]
  226. trans_print(wind_col_name, "去掉非法时间后大小:", df.shape[0])
  227. df['time_stamp'] = pd.to_datetime(df['time_stamp'])
  228. df['year'] = df['time_stamp'].dt.year
  229. df['month'] = df['time_stamp'].dt.month
  230. df['day'] = df['time_stamp'].dt.day
  231. df.sort_values(by='time_stamp', inplace=True)
  232. df['time_stamp'] = df['time_stamp'].apply(
  233. lambda x: x.strftime('%Y-%m-%d %H:%M:%S'))
  234. trans_print("处理时间字段结束")
  235. # 如果包含*号,祛除
  236. trans_print(wind_col_name, "过滤星号前大小:", df.shape[0])
  237. mask = ~df.applymap(lambda x: isinstance(x, str) and '*' in x).any(axis=1)
  238. df = df[mask]
  239. trans_print(wind_col_name, "过滤星号后大小:", df.shape[0])
  240. trans_print(wind_col_name, "转化风机名称结束")
  241. if self.save_zip:
  242. save_path = os.path.join(self.get_save_path(), str(wind_col_name) + '.csv.gz')
  243. else:
  244. save_path = os.path.join(self.get_save_path(), str(wind_col_name) + '.csv')
  245. create_file_path(save_path, is_file_path=True)
  246. if self.save_zip:
  247. df.to_csv(save_path, compression='gzip', index=False, encoding='utf-8')
  248. else:
  249. df.to_csv(save_path, index=False, encoding='utf-8')
  250. self.set_statistics_data(df)
  251. del df
  252. trans_print("保存" + str(filename) + ".csv成功")
  253. def remove_file_to_tmp_path(self):
  254. # 读取文件
  255. try:
  256. if os.path.isfile(self.trans_param.read_path):
  257. all_files = [self.trans_param.read_path]
  258. else:
  259. all_files = read_files(self.trans_param.read_path)
  260. with multiprocessing.Pool(6) as pool:
  261. pool.starmap(self.get_and_remove, [(i,) for i in all_files])
  262. all_files = read_excel_files(self.get_excel_tmp_path())
  263. trans_print('读取文件数量:', len(all_files))
  264. except Exception as e:
  265. trans_print(traceback.format_exc())
  266. message = "读取文件列表错误:" + self.trans_param.read_path + ",系统返回错误:" + str(e)
  267. raise ValueError(message)
  268. return all_files
  269. def read_file_and_save_tmp(self):
  270. all_files = read_excel_files(self.get_excel_tmp_path())
  271. if self.trans_param.merge_columns:
  272. dfs_list = list()
  273. index_keys = [self.trans_param.cols_tran['time_stamp']]
  274. wind_col = self.trans_param.cols_tran['wind_turbine_number']
  275. if str(wind_col).startswith("$"):
  276. wind_col = 'wind_turbine_number'
  277. index_keys.append(wind_col)
  278. df_map = dict()
  279. with multiprocessing.Pool(6) as pool:
  280. dfs = pool.starmap(self.read_excel_to_df, [(file,) for file in all_files])
  281. for df in dfs:
  282. key = '-'.join(df.columns)
  283. if key in df_map.keys():
  284. df_map[key] = pd.concat([df_map[key], df])
  285. else:
  286. df_map[key] = df
  287. for k, df in df_map.items():
  288. df.drop_duplicates(inplace=True)
  289. df.set_index(keys=index_keys, inplace=True)
  290. df = df[~df.index.duplicated(keep='first')]
  291. dfs_list.append(df)
  292. df = pd.concat(dfs_list, axis=1)
  293. df.reset_index(inplace=True)
  294. try:
  295. self.df_save_to_tmp_file(df, "")
  296. except Exception as e:
  297. trans_print(traceback.format_exc())
  298. message = "合并列出现错误:" + str(e)
  299. raise ValueError(message)
  300. else:
  301. split_count = 6
  302. all_arrays = split_array(all_files, split_count)
  303. for arr in all_arrays:
  304. with multiprocessing.Pool(split_count) as pool:
  305. dfs = pool.starmap(self.read_excel_to_df, [(ar,) for ar in arr])
  306. try:
  307. for df in dfs:
  308. self.df_save_to_tmp_file(df)
  309. except Exception as e:
  310. trans_print(traceback.format_exc())
  311. message = "整理临时文件,系统返回错误:" + str(e)
  312. raise ValueError(message)
  313. def mutiprocessing_to_save_file(self):
  314. # 开始保存到正式文件
  315. trans_print("开始保存到excel文件")
  316. all_tmp_files = read_excel_files(self.get_read_tmp_path())
  317. try:
  318. with multiprocessing.Pool(6) as pool:
  319. pool.starmap(self.save_to_csv, [(file,) for file in all_tmp_files])
  320. except Exception as e:
  321. trans_print(traceback.format_exc())
  322. message = "保存文件错误,系统返回错误:" + str(e)
  323. raise ValueError(message)
  324. trans_print("结束保存到excel文件")
  325. def mutiprocessing_to_save_db(self):
  326. # 开始保存到SQL文件
  327. trans_print("开始保存到数据库文件")
  328. all_saved_files = read_excel_files(self.get_save_path())
  329. table_name = self.batch_no + "_" + self.trans_param.read_type
  330. creat_table_and_add_partition(table_name, len(all_saved_files), self.trans_param.read_type)
  331. try:
  332. with multiprocessing.Pool(6) as pool:
  333. pool.starmap(save_file_to_db,
  334. [(table_name, file, self.batch_count) for file in all_saved_files])
  335. except Exception as e:
  336. trans_print(traceback.format_exc())
  337. message = "保存到数据库错误,系统返回错误:" + str(e)
  338. raise ValueError(message)
  339. trans_print("结束保存到数据库文件")
  340. def _rename_file(self):
  341. save_path = self.get_save_path()
  342. files = os.listdir(save_path)
  343. files.sort(key=lambda x: int(str(x).split(os.sep)[-1].split(".")[0][1:]))
  344. for index, file in enumerate(files):
  345. file_path = os.path.join(save_path, 'F' + str(index + 1).zfill(3) + ".csv.gz")
  346. os.rename(os.path.join(save_path, file), file_path)
  347. def delete_batch_files(self):
  348. trans_print("开始删除已存在的批次文件夹")
  349. if os.path.exists(self.get_save_path()):
  350. shutil.rmtree(self.get_save_path())
  351. trans_print("删除已存在的批次文件夹")
  352. def delete_tmp_files(self):
  353. trans_print("开始删除临时文件夹")
  354. if os.path.exists(self.get_save_tmp_path()):
  355. shutil.rmtree(self.get_save_tmp_path())
  356. trans_print("删除临时文件夹删除成功")
  357. def delete_batch_db(self):
  358. if self.save_db:
  359. table_name = "_".join([self.batch_no, self.trans_param.read_type])
  360. renamed_table_name = "del_" + table_name + "_" + datetime.datetime.now().strftime('%Y%m%d%H%M%S')
  361. # rename_table(table_name, renamed_table_name, self.save_db)
  362. drop_table(table_name, self.save_db)
  363. def run(self, step=0, end=3):
  364. begin = datetime.datetime.now()
  365. trans_print("开始执行")
  366. update_trans_status_running(self.batch_no, self.trans_param.read_type, self.save_db)
  367. if step <= 0 and end >= 0:
  368. tmp_begin = datetime.datetime.now()
  369. trans_print("开始初始化字段")
  370. self.delete_batch_files()
  371. self.delete_batch_db()
  372. self.params_valid([self.batch_no, self.field_code, self.save_path, self.trans_param.read_type,
  373. self.trans_param.read_path, self.wind_full_name])
  374. # if self.trans_param.resolve_col_prefix:
  375. # column = "测试"
  376. # eval(self.trans_param.resolve_col_prefix)
  377. #
  378. # if self.trans_param.wind_name_exec:
  379. # wind_name = "测试"
  380. # eval(self.trans_param.wind_name_exec)
  381. trans_print("初始化字段结束,耗时:", str(datetime.datetime.now() - tmp_begin), ",总耗时:",
  382. str(datetime.datetime.now() - begin))
  383. if step <= 1 and end >= 1:
  384. # 更新运行状态到运行中
  385. tmp_begin = datetime.datetime.now()
  386. self.delete_tmp_files()
  387. trans_print("开始保存到临时路径")
  388. # 开始读取数据并分类保存临时文件
  389. self.remove_file_to_tmp_path()
  390. trans_print("保存到临时路径结束,耗时:", str(datetime.datetime.now() - tmp_begin), ",总耗时:",
  391. str(datetime.datetime.now() - begin))
  392. if step <= 2 and end >= 2:
  393. # 更新运行状态到运行中
  394. tmp_begin = datetime.datetime.now()
  395. trans_print("开始保存到临时文件")
  396. # 开始读取数据并分类保存临时文件
  397. self.read_file_and_save_tmp()
  398. trans_print("保存到临时文件结束,耗时:", str(datetime.datetime.now() - tmp_begin), ",总耗时:",
  399. str(datetime.datetime.now() - begin))
  400. if step <= 3 and end >= 3:
  401. tmp_begin = datetime.datetime.now()
  402. trans_print("开始保存到文件")
  403. self.mutiprocessing_to_save_file()
  404. self.save_statistics_file()
  405. trans_print("保存到文件结束,耗时:", str(datetime.datetime.now() - tmp_begin), ",总耗时:",
  406. str(datetime.datetime.now() - begin))
  407. if step <= 4 and end >= 4:
  408. if self.save_db:
  409. trans_print("开始保存到数据库")
  410. tmp_begin = datetime.datetime.now()
  411. self.mutiprocessing_to_save_db()
  412. trans_print("保存到数据库结束,耗时:", str(datetime.datetime.now() - tmp_begin), ",总耗时:",
  413. str(datetime.datetime.now() - begin))
  414. # 如果end==0 则说明只是进行了验证
  415. if end != 0:
  416. update_trans_status_success(self.batch_no, self.trans_param.read_type,
  417. len(read_excel_files(self.get_read_tmp_path())), self.save_db)
  418. self.delete_tmp_files()
  419. trans_print("结束执行", self.trans_param.read_type, ",总耗时:",
  420. str(datetime.datetime.now() - begin))