LaserTrans.py 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687
  1. import datetime
  2. import json
  3. import multiprocessing
  4. import os.path
  5. import numpy as np
  6. import pandas as pd
  7. from service.plt_service import get_all_wind
  8. from service.trans_service import save_df_to_db
  9. from service.trans_conf_service import update_trans_status_running, update_trans_transfer_progress, \
  10. update_trans_status_success
  11. from utils.file.trans_methods import read_files, read_file_to_df
  12. from utils.log.trans_log import set_trance_id, trans_print
  13. class LaserTrans():
  14. """
  15. 激光测距仪转化
  16. """
  17. def __init__(self, id, wind_farm_code, read_path):
  18. self.id = id
  19. self.wind_farm_code = wind_farm_code
  20. self.read_path = read_path
  21. self.begin = datetime.datetime.now()
  22. self.wind_col_trans, _ = get_all_wind(self.wind_farm_code, need_rated_param=False)
  23. def get_file_data(self, file_path):
  24. file_name = os.path.basename(file_path)
  25. wind_farm, wind_turbine_number, acquisition_time, sampling_frequency = file_name.split("_")
  26. result_df = pd.DataFrame()
  27. result_df['wind_turbine_number'] = [wind_turbine_number]
  28. result_df['acquisition_time'] = [pd.to_datetime(acquisition_time, format='%Y%m%d%H%M%S')]
  29. result_df['sampling_frequency'] = [sampling_frequency]
  30. result_df['wind_turbine_number'] = result_df['wind_turbine_number'].map(self.wind_col_trans).fillna(
  31. result_df['wind_turbine_number'])
  32. # 获取数据
  33. df = read_file_to_df(file_path)
  34. if not df.empty:
  35. result_df['pk_no'] = [df['PkNo'].values[0]]
  36. result_df['echo_type'] = [df['EchoType'].values[0]]
  37. result_df['echo1_dist'] = [json.dumps([float(i) for i in df['Echo1Dist'].values if not np.isnan(i)])]
  38. result_df['echo1_grey'] = [json.dumps([int(i) for i in df['Echo1Grey'].values if not np.isnan(i)])]
  39. result_df['echo2_dist'] = [json.dumps([float(i) for i in df['Echo2Dist'].values if not np.isnan(i)])]
  40. result_df['echo2_grey'] = [json.dumps([int(i) for i in df['Echo2Grey'].values if not np.isnan(i)])]
  41. result_df['echo3_dist'] = [json.dumps([float(i) for i in df['Echo3Dist'].values if not np.isnan(i)])]
  42. result_df['echo3_grey'] = [json.dumps([int(i) for i in df['Echo3Grey'].values if not np.isnan(i)])]
  43. else:
  44. return pd.DataFrame()
  45. return result_df
  46. def run(self):
  47. update_trans_status_running(self.id)
  48. trance_id = '-'.join([self.wind_farm_code, 'laser'])
  49. set_trance_id(trance_id)
  50. all_files = read_files(self.read_path, ['csv'])
  51. trans_print(self.wind_farm_code, '获取文件总数为:', len(all_files))
  52. pool_count = 8 if len(all_files) > 8 else len(all_files)
  53. with multiprocessing.Pool(pool_count) as pool:
  54. dfs = pool.map(self.get_file_data, all_files)
  55. update_trans_transfer_progress(self.id, 80)
  56. df = pd.concat(dfs, ignore_index=True)
  57. update_trans_transfer_progress(self.id, 90)
  58. df.sort_values(by=['acquisition_time'], inplace=True)
  59. save_df_to_db(self.wind_farm_code + "_laser", df)
  60. update_trans_status_success(self.id, len(df['wind_turbine_number'].unique()), None,
  61. df['acquisition_time'].min(), df['acquisition_time'].max(), df.shape[0])
  62. # update_trans_status_success(self.id)
  63. trans_print(self.wind_farm_code, '执行结束,总耗时:', (datetime.datetime.now() - self.begin))
  64. if __name__ == '__main__':
  65. import sys
  66. from os import path, environ
  67. env = 'dev'
  68. if len(sys.argv) >= 2:
  69. env = sys.argv[1]
  70. conf_path = path.abspath(__file__).split("energy-data-trans")[0] + f"/energy-data-trans/conf/etl_config_{env}.yaml"
  71. environ['ETL_CONF'] = conf_path
  72. environ['env'] = env
  73. LaserTrans('JGCS001', r'D:\data\激光\测试').run()