ReadAndSaveTmp.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365
  1. import datetime
  2. import multiprocessing
  3. import traceback
  4. from os import *
  5. import pandas as pd
  6. from etl.common.PathsAndTable import PathsAndTable
  7. from etl.wind_power.min_sec import TransParam
  8. from service.trans_conf_service import update_trans_transfer_progress
  9. from utils.file.trans_methods import read_excel_files, split_array, del_blank, \
  10. create_file_path, read_file_to_df, valid_eval
  11. from utils.log.trans_log import trans_print
  12. from utils.systeminfo.sysinfo import use_files_get_max_cpu_count, get_dir_size
  13. class ReadAndSaveTmp(object):
  14. def __init__(self, pathsAndTable: PathsAndTable, trans_param: TransParam):
  15. self.pathsAndTable = pathsAndTable
  16. self.trans_param = trans_param
  17. self.exist_wind_names = multiprocessing.Manager().list()
  18. self.lock = multiprocessing.Manager().Lock()
  19. self.file_lock = multiprocessing.Manager().dict()
  20. def _save_to_tmp_csv_by_name(self, df, name):
  21. save_name = str(name) + '.csv'
  22. save_path = path.join(self.pathsAndTable.get_read_tmp_path(), save_name)
  23. create_file_path(save_path, is_file_path=True)
  24. with self.lock:
  25. if name in self.exist_wind_names:
  26. contains_name = True
  27. else:
  28. contains_name = False
  29. self.exist_wind_names.append(name)
  30. if contains_name:
  31. df.to_csv(save_path, index=False, encoding='utf8', mode='a',
  32. header=False)
  33. else:
  34. df.to_csv(save_path, index=False, encoding='utf8')
  35. def save_merge_data(self, file_path):
  36. df = self.read_excel_to_df(file_path)
  37. if self.trans_param.wind_name_exec:
  38. if valid_eval(self.trans_param.wind_name_exec):
  39. exec_str = f"df['wind_turbine_number'].apply(lambda wind_name: {self.trans_param.wind_name_exec} )"
  40. df['wind_turbine_number'] = eval(exec_str)
  41. df = self.trans_df_cols(df)
  42. wind_names = set(df['wind_turbine_number'].values)
  43. cols = list(df.columns)
  44. cols.sort()
  45. for wind_name in wind_names:
  46. for col in df.columns:
  47. if col not in ['wind_turbine_number', 'time_stamp']:
  48. csv_name = str(col) + ".csv"
  49. exist_name = wind_name + '-' + csv_name
  50. merge_path = self.pathsAndTable.get_merge_tmp_path(wind_name)
  51. create_file_path(merge_path)
  52. with self.lock:
  53. if exist_name in self.exist_wind_names:
  54. contains_name = True
  55. else:
  56. contains_name = False
  57. self.exist_wind_names.append(exist_name)
  58. save_path = path.join(merge_path, csv_name)
  59. now_df = df[df['wind_turbine_number'] == wind_name][['time_stamp', col]]
  60. if contains_name:
  61. now_df.to_csv(save_path, index=False, encoding='utf-8', mode='a',
  62. header=False)
  63. else:
  64. now_df.to_csv(save_path, index=False, encoding='utf-8')
  65. def trans_df_cols(self, df):
  66. if self.trans_param.is_vertical_table:
  67. pass
  68. else:
  69. # 转换字段
  70. same_col = {}
  71. if self.trans_param.cols_tran:
  72. cols_tran = self.trans_param.cols_tran
  73. real_cols_trans = dict()
  74. for k, v in cols_tran.items():
  75. if v and not v.startswith("$"):
  76. if v not in real_cols_trans.keys():
  77. real_cols_trans[v] = k
  78. else:
  79. value = real_cols_trans[v]
  80. if value in same_col.keys():
  81. same_col[value].append(k)
  82. else:
  83. same_col[value] = [k]
  84. df.rename(columns=real_cols_trans, inplace=True)
  85. # 添加使用同一个excel字段的值
  86. for key in same_col.keys():
  87. for col in same_col[key]:
  88. df[col] = df[key]
  89. del_keys = set(df.columns) - set(cols_tran.keys())
  90. for key in del_keys:
  91. df.drop(key, axis=1, inplace=True)
  92. return df
  93. def df_save_to_tmp_file(self, df=pd.DataFrame()):
  94. df = self.trans_df_cols(df)
  95. df = del_blank(df, ['wind_turbine_number'])
  96. df = df[df['time_stamp'].isna() == False]
  97. if self.trans_param.wind_name_exec and not self.trans_param.merge_columns:
  98. if valid_eval(self.trans_param.wind_name_exec):
  99. exec_str = f"df['wind_turbine_number'].apply(lambda wind_name: {self.trans_param.wind_name_exec} )"
  100. df['wind_turbine_number'] = eval(exec_str)
  101. self.save_to_tmp_csv(df)
  102. def save_to_tmp_csv(self, df):
  103. names = set(df['wind_turbine_number'].values)
  104. if names:
  105. trans_print("开始保存", str(names), "到临时文件", df.shape)
  106. for name in names:
  107. self._save_to_tmp_csv_by_name(df[df['wind_turbine_number'] == name], name)
  108. del df
  109. trans_print("保存", str(names), "到临时文件成功, 风机数量", len(names))
  110. def merge_df(self, dir_path):
  111. all_files = read_excel_files(dir_path)
  112. wind_turbine_number = path.basename(dir_path)
  113. df = pd.DataFrame()
  114. for file in all_files:
  115. now_df = read_file_to_df(file)
  116. now_df['wind_turbine_number'] = wind_turbine_number
  117. now_df.dropna(subset=['time_stamp'], inplace=True)
  118. now_df.drop_duplicates(subset=['time_stamp'], inplace=True)
  119. now_df.set_index(keys=['time_stamp', 'wind_turbine_number'], inplace=True)
  120. df = pd.concat([df, now_df], axis=1)
  121. df.reset_index(inplace=True)
  122. self.df_save_to_tmp_file(df)
  123. return df
  124. def read_file_and_save_tmp(self):
  125. all_files = read_excel_files(self.pathsAndTable.get_excel_tmp_path())
  126. split_count = use_files_get_max_cpu_count(all_files)
  127. all_arrays = split_array(all_files, split_count)
  128. if self.trans_param.merge_columns:
  129. for index, arr in enumerate(all_arrays):
  130. try:
  131. with multiprocessing.Pool(split_count) as pool:
  132. pool.starmap(self.save_merge_data, [(ar,) for ar in arr])
  133. except Exception as e:
  134. trans_print(traceback.format_exc())
  135. message = "整理临时文件,系统返回错误:" + str(e)
  136. raise ValueError(message)
  137. update_trans_transfer_progress(self.pathsAndTable.id,
  138. round(20 + 20 * (index + 1) / len(all_arrays), 2),
  139. self.pathsAndTable.save_db)
  140. dirs = [path.join(self.pathsAndTable.get_merge_tmp_path(), dir_name) for dir_name in
  141. listdir(self.pathsAndTable.get_merge_tmp_path())]
  142. dir_total_size = get_dir_size(dirs[0])
  143. # split_count = max_file_size_get_max_cpu_count(dir_total_size, memory_percent=1 / 12, cpu_percent=1 / 10)
  144. split_count = 2
  145. all_arrays = split_array(dirs, split_count)
  146. for index, arr in enumerate(all_arrays):
  147. try:
  148. with multiprocessing.Pool(split_count) as pool:
  149. pool.starmap(self.merge_df, [(ar,) for ar in arr])
  150. except Exception as e:
  151. trans_print(traceback.format_exc())
  152. message = "整理临时文件,系统返回错误:" + str(e)
  153. raise ValueError(message)
  154. update_trans_transfer_progress(self.pathsAndTable.id,
  155. round(20 + 30 * (index + 1) / len(all_arrays), 2),
  156. self.pathsAndTable.save_db)
  157. else:
  158. for index, arr in enumerate(all_arrays):
  159. try:
  160. with multiprocessing.Pool(split_count) as pool:
  161. dfs = pool.starmap(self.read_excel_to_df, [(ar,) for ar in arr])
  162. for df in dfs:
  163. self.df_save_to_tmp_file(df)
  164. except Exception as e:
  165. trans_print(traceback.format_exc())
  166. message = "整理临时文件,系统返回错误:" + str(e)
  167. raise ValueError(message)
  168. update_trans_transfer_progress(self.pathsAndTable.id,
  169. round(20 + 30 * (index + 1) / len(all_arrays), 2),
  170. self.pathsAndTable.save_db)
  171. def read_excel_to_df(self, file_path):
  172. read_cols = [v.split(",")[0] for k, v in self.trans_param.cols_tran.items() if v and not v.startswith("$")]
  173. trans_dict = {}
  174. for k, v in self.trans_param.cols_tran.items():
  175. if v and not str(v).startswith("$"):
  176. trans_dict[v] = k
  177. if self.trans_param.is_vertical_table:
  178. vertical_cols = self.trans_param.vertical_cols
  179. df = read_file_to_df(file_path, vertical_cols, trans_cols=self.trans_param.vertical_cols)
  180. df = df[df[self.trans_param.vertical_key].isin(read_cols)]
  181. df.rename(columns={self.trans_param.cols_tran['wind_turbine_number']: 'wind_turbine_number',
  182. self.trans_param.cols_tran['time_stamp']: 'time_stamp'}, inplace=True)
  183. df[self.trans_param.vertical_key] = df[self.trans_param.vertical_key].map(trans_dict).fillna(
  184. df[self.trans_param.vertical_key])
  185. return df
  186. else:
  187. trans_dict = dict()
  188. trans_cols = []
  189. for k, v in self.trans_param.cols_tran.items():
  190. if v and v.startswith("$") or v.find(",") > 0:
  191. trans_dict[v] = k
  192. if v.find("|") > -1:
  193. vs = v.split("|")
  194. trans_cols.extend(vs)
  195. else:
  196. trans_cols.append(v)
  197. trans_cols = list(set(trans_cols))
  198. if self.trans_param.merge_columns:
  199. df = read_file_to_df(file_path, trans_cols=trans_cols, not_find_header='ignore',
  200. resolve_col_prefix=self.trans_param.resolve_col_prefix)
  201. else:
  202. if self.trans_param.need_valid_cols:
  203. df = read_file_to_df(file_path, read_cols, trans_cols=trans_cols)
  204. else:
  205. df = read_file_to_df(file_path, trans_cols=trans_cols)
  206. # 处理列名前缀问题
  207. if self.trans_param.resolve_col_prefix:
  208. columns_dict = dict()
  209. if valid_eval(self.trans_param.resolve_col_prefix):
  210. for column in df.columns:
  211. columns_dict[column] = eval(self.trans_param.resolve_col_prefix)
  212. df.rename(columns=columns_dict, inplace=True)
  213. if self.trans_param.merge_columns:
  214. select_cols = [self.trans_param.cols_tran['wind_turbine_number'],
  215. self.trans_param.cols_tran['time_stamp'],
  216. 'wind_turbine_number', 'time_stamp']
  217. select_cols.extend(trans_cols)
  218. rename_dict = dict()
  219. wind_turbine_number_col = self.trans_param.cols_tran['wind_turbine_number']
  220. if wind_turbine_number_col.find("|") > -1:
  221. cols = wind_turbine_number_col.split("|")
  222. for col in cols:
  223. rename_dict[col] = 'wind_turbine_number'
  224. time_stamp_col = self.trans_param.cols_tran['time_stamp']
  225. if time_stamp_col.find("|") > -1:
  226. cols = time_stamp_col.split("|")
  227. for col in cols:
  228. rename_dict[col] = 'time_stamp'
  229. df.rename(columns=rename_dict, inplace=True)
  230. for col in df.columns:
  231. if col not in select_cols:
  232. del df[col]
  233. for k, v in trans_dict.items():
  234. if k.startswith("$file"):
  235. file = ".".join(path.basename(file_path).split(".")[0:-1])
  236. if k == "$file":
  237. ks = k.split("|")
  238. bool_contains = False
  239. for k_data in ks:
  240. if k_data in df.columns or v in df.columns:
  241. bool_contains = True
  242. if not bool_contains:
  243. df[v] = str(file)
  244. elif k.startswith("$file["):
  245. ks = k.split("|")
  246. bool_contains = False
  247. for k_data in ks:
  248. if k_data in df.columns or v in df.columns:
  249. bool_contains = True
  250. if not bool_contains:
  251. datas = str(ks[0].replace("$file", "").replace("[", "").replace("]", "")).split(":")
  252. if len(datas) != 2:
  253. raise Exception("字段映射出现错误 :" + str(trans_dict))
  254. df[v] = str(file[int(datas[0]):int(datas[1])]).strip()
  255. elif k.startswith("$file.split"):
  256. ks = k.split("|")
  257. bool_contains = False
  258. for k_data in ks:
  259. if k_data in df.columns or v in df.columns:
  260. bool_contains = True
  261. if not bool_contains:
  262. datas = str(ks[0]).replace("$file.split(", "").replace(")", "").split(",")
  263. split_str = str(datas[0])
  264. split_index = int(datas[1])
  265. df[v] = str(file.split(split_str)[split_index])
  266. elif k.find("$file_date") > 0:
  267. datas = str(k.split(",")[1].replace("$file_date", "").replace("[", "").replace("]", "")).split(":")
  268. if len(datas) != 2:
  269. raise Exception("字段映射出现错误 :" + str(trans_dict))
  270. file = ".".join(path.basename(file_path).split(".")[0:-1])
  271. date_str = str(file[int(datas[0]):int(datas[1])]).strip()
  272. df[v] = df[k.split(",")[0]].apply(lambda x: date_str + " " + str(x))
  273. elif k.startswith("$folder"):
  274. folder = file_path
  275. ks = k.split("|")
  276. bool_contains = False
  277. for k_data in ks:
  278. if k_data in df.columns or v in df.columns:
  279. bool_contains = True
  280. if not bool_contains:
  281. cengshu = int(str(ks[0].replace("$folder", "").replace("[", "").replace("]", "")))
  282. for i in range(cengshu):
  283. folder = path.dirname(folder)
  284. df[v] = str(str(folder).split(sep)[-1]).strip()
  285. elif k.startswith("$sheet_name"):
  286. df[v] = df['sheet_name']
  287. if 'time_stamp' not in df.columns:
  288. cols_trans = [i for i in self.trans_param.cols_tran['time_stamp'].split('|')]
  289. cols_dict = dict()
  290. for col in cols_trans:
  291. cols_dict[col] = 'time_stamp'
  292. df.rename(columns=cols_dict, inplace=True)
  293. if 'wind_turbine_number' not in df.columns:
  294. cols_trans = [i for i in self.trans_param.cols_tran['wind_turbine_number'].split('|')]
  295. cols_dict = dict()
  296. for col in cols_trans:
  297. cols_dict[col] = 'wind_turbine_number'
  298. df.rename(columns=cols_dict, inplace=True)
  299. return df
  300. def run(self):
  301. trans_print("开始保存数据到临时文件")
  302. begin = datetime.datetime.now()
  303. self.read_file_and_save_tmp()
  304. update_trans_transfer_progress(self.pathsAndTable.id, 50,
  305. self.pathsAndTable.save_db)
  306. trans_print("保存数据到临时文件结束,耗时:", datetime.datetime.now() - begin)