WindFarms.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
  1. # -*- coding: utf-8 -*-
  2. # @Time : 2024/5/15
  3. # @Author : 魏志亮
  4. import datetime
  5. import multiprocessing
  6. import tempfile
  7. from etl.base.TranseParam import TranseParam
  8. from service.plt_service import get_all_wind, update_trans_status_error, update_trans_status_running, \
  9. update_trans_status_success
  10. from service.trans_service import creat_table_and_add_partition, rename_table, save_file_to_db
  11. from utils.file.trans_methods import *
  12. from utils.log.trans_log import logger
  13. from utils.zip.unzip import unzip, unrar, get_desc_path
  14. class WindFarms(object):
  15. def __init__(self, batch_no=None, field_code=None, params: TranseParam = None, wind_full_name=None,
  16. save_db=True):
  17. self.batch_no = batch_no
  18. self.field_code = field_code
  19. self.wind_full_name = wind_full_name
  20. self.save_zip = False
  21. self.trans_param = params
  22. self.exist_wind_names = multiprocessing.Manager().list()
  23. self.wind_col_trans = get_all_wind(self.field_code)
  24. self.batch_count = 50000
  25. self.save_path = None
  26. self.save_db = save_db
  27. self.lock = multiprocessing.Manager().Lock()
  28. self.statistics_map = multiprocessing.Manager().dict()
  29. def set_trans_param(self, params: TranseParam):
  30. self.trans_param = params
  31. read_path = str(params.read_path)
  32. if read_path.find(self.wind_full_name) == -1:
  33. message = "读取路径与配置路径不匹配:" + self.trans_param.read_path + ",配置文件为:" + self.wind_full_name
  34. update_trans_status_error(self.batch_no, self.trans_param.read_type, message, self.save_db)
  35. raise ValueError(message)
  36. self.save_path = os.path.join(read_path[0:read_path.find(self.wind_full_name)], self.wind_full_name, "清理数据")
  37. def params_valid(self, not_null_list=list()):
  38. for arg in not_null_list:
  39. if arg is None or arg == '':
  40. raise Exception("Invalid param set :" + arg)
  41. def get_save_path(self):
  42. return os.path.join(self.save_path, self.batch_no, self.trans_param.read_type)
  43. def get_save_tmp_path(self):
  44. return os.path.join(tempfile.gettempdir(), self.wind_full_name, self.batch_no, self.trans_param.read_type)
  45. def get_excel_tmp_path(self):
  46. return os.path.join(self.get_save_tmp_path(), 'excel_tmp' + os.sep)
  47. def get_read_tmp_path(self):
  48. return os.path.join(self.get_save_tmp_path(), 'read_tmp')
  49. def df_save_to_tmp_file(self, df=pd.DataFrame(), file=None):
  50. if self.trans_param.is_vertical_table:
  51. pass
  52. else:
  53. # 转换字段
  54. if self.trans_param.cols_tran:
  55. cols_tran = self.trans_param.cols_tran
  56. real_cols_trans = dict()
  57. for k, v in cols_tran.items():
  58. if v and not v.startswith("$"):
  59. real_cols_trans[v] = k
  60. trans_print("包含转换字段,开始处理转换字段")
  61. df.rename(columns=real_cols_trans, inplace=True)
  62. del_keys = set(df.columns) - set(cols_tran.keys())
  63. for key in del_keys:
  64. df.drop(key, axis=1, inplace=True)
  65. df = del_blank(df, ['wind_turbine_number'])
  66. self.save_to_tmp_csv(df, file)
  67. def get_and_remove(self, file):
  68. to_path = self.get_excel_tmp_path()
  69. if str(file).endswith("zip"):
  70. if str(file).endswith("csv.zip"):
  71. copy_to_new(file, file.replace(self.trans_param.read_path, to_path).replace("csv.zip", 'csv.gz'))
  72. else:
  73. desc_path = file.replace(self.trans_param.read_path, to_path)
  74. is_success, e = unzip(file, get_desc_path(desc_path))
  75. self.trans_param.has_zip = True
  76. if not is_success:
  77. raise e
  78. elif str(file).endswith("rar"):
  79. desc_path = file.replace(self.trans_param.read_path, to_path)
  80. is_success, e = unrar(file, get_desc_path(desc_path))
  81. self.trans_param.has_zip = True
  82. if not is_success:
  83. raise e
  84. else:
  85. copy_to_new(file, file.replace(self.trans_param.read_path, to_path))
  86. def read_excel_to_df(self, file):
  87. read_cols = [v for k, v in self.trans_param.cols_tran.items() if v and not v.startswith("$")]
  88. trans_dict = {}
  89. for k, v in self.trans_param.cols_tran.items():
  90. if v and not str(v).startswith("$"):
  91. trans_dict[v] = k
  92. if self.trans_param.is_vertical_table:
  93. vertical_cols = self.trans_param.vertical_cols
  94. df = read_file_to_df(file, vertical_cols)
  95. df = df[df[self.trans_param.vertical_key].isin(read_cols)]
  96. df.rename(columns={self.trans_param.cols_tran['wind_turbine_number']: 'wind_turbine_number',
  97. self.trans_param.cols_tran['time_stamp']: 'time_stamp'}, inplace=True)
  98. df[self.trans_param.vertical_key] = df[self.trans_param.vertical_key].map(trans_dict).fillna(
  99. df[self.trans_param.vertical_key])
  100. return df
  101. else:
  102. trans_dict = dict()
  103. for k, v in self.trans_param.cols_tran.items():
  104. if v and v.startswith("$"):
  105. trans_dict[v] = k
  106. if self.trans_param.merge_columns:
  107. df = read_file_to_df(file)
  108. else:
  109. if self.trans_param.need_valid_cols:
  110. df = read_file_to_df(file, read_cols)
  111. else:
  112. df = read_file_to_df(file)
  113. # 处理列名前缀问题
  114. if self.trans_param.resolve_col_prefix:
  115. columns_dict = dict()
  116. for column in df.columns:
  117. columns_dict[column] = eval(self.trans_param.resolve_col_prefix)
  118. df.rename(columns=columns_dict, inplace=True)
  119. for k, v in trans_dict.items():
  120. if k.startswith("$file"):
  121. file_name = ".".join(os.path.basename(file).split(".")[0:-1])
  122. if k == "$file":
  123. df[v] = str(file_name)
  124. else:
  125. datas = str(k.replace("$file", "").replace("[", "").replace("]", "")).split(":")
  126. if len(datas) != 2:
  127. raise Exception("字段映射出现错误 :" + str(trans_dict))
  128. df[v] = str(file_name[int(datas[0]):int(datas[1])]).strip()
  129. elif k.startswith("$folder"):
  130. folder = file
  131. cengshu = int(str(k.replace("$folder", "").replace("[", "").replace("]", "")))
  132. for i in range(cengshu):
  133. folder = os.path.dirname(folder)
  134. df[v] = str(str(folder).split(os.sep)[-1]).strip()
  135. return df
  136. def _save_to_tmp_csv_by_name(self, df, name):
  137. save_name = str(name) + '.csv'
  138. save_path = os.path.join(self.get_read_tmp_path(), save_name)
  139. create_file_path(save_path, is_file_path=True)
  140. with self.lock:
  141. if name in self.exist_wind_names:
  142. contains_name = True
  143. else:
  144. contains_name = False
  145. self.exist_wind_names.append(name)
  146. if contains_name:
  147. df.to_csv(save_path, index=False, encoding='utf8', mode='a',
  148. header=False)
  149. else:
  150. df.to_csv(save_path, index=False, encoding='utf8')
  151. def save_to_tmp_csv(self, df, file):
  152. trans_print("开始保存", str(file), "到临时文件")
  153. names = set(df['wind_turbine_number'].values)
  154. with multiprocessing.Pool(6) as pool:
  155. pool.starmap(self._save_to_tmp_csv_by_name,
  156. [(df[df['wind_turbine_number'] == name], name) for name in names])
  157. del df
  158. trans_print("保存", str(names), "到临时文件成功, 风机数量", len(names))
  159. def set_statistics_data(self, df):
  160. if not df.empty:
  161. min_date = pd.to_datetime(df['time_stamp']).min()
  162. max_date = pd.to_datetime(df['time_stamp']).max()
  163. with self.lock:
  164. if 'min_date' in self.statistics_map.keys():
  165. if self.statistics_map['min_date'] > min_date:
  166. self.statistics_map['min_date'] = min_date
  167. else:
  168. self.statistics_map['min_date'] = min_date
  169. if 'max_date' in self.statistics_map.keys():
  170. if self.statistics_map['max_date'] < max_date:
  171. self.statistics_map['max_date'] = max_date
  172. else:
  173. self.statistics_map['max_date'] = max_date
  174. if 'total_count' in self.statistics_map.keys():
  175. self.statistics_map['total_count'] = self.statistics_map['total_count'] + df.shape[0]
  176. else:
  177. self.statistics_map['total_count'] = df.shape[0]
  178. def save_statistics_file(self):
  179. save_path = os.path.join(os.path.dirname(self.get_save_path()),
  180. self.trans_param.read_type + '_statistics.txt')
  181. create_file_path(save_path, is_file_path=True)
  182. with open(save_path, 'w', encoding='utf8') as f:
  183. f.write("总数据量:" + str(self.statistics_map['total_count']) + "\n")
  184. f.write("最小时间:" + str(self.statistics_map['min_date']) + "\n")
  185. f.write("最大时间:" + str(self.statistics_map['max_date']) + "\n")
  186. f.write("风机数量:" + str(len(read_excel_files(self.get_read_tmp_path()))) + "\n")
  187. def save_to_csv(self, filename):
  188. df = read_file_to_df(filename)
  189. if self.trans_param.is_vertical_table:
  190. df = df.pivot_table(index=['time_stamp', 'wind_turbine_number'], columns=self.trans_param.vertical_key,
  191. values=self.trans_param.vertical_value,
  192. aggfunc='max')
  193. # 重置索引以得到普通的列
  194. df.reset_index(inplace=True)
  195. for k in self.trans_param.cols_tran.keys():
  196. if k not in df.columns:
  197. df[k] = None
  198. df = df[self.trans_param.cols_tran.keys()]
  199. # 添加年月日
  200. trans_print("包含时间字段,开始处理时间字段,添加年月日", filename)
  201. df['time_stamp'] = pd.to_datetime(df['time_stamp'])
  202. df['year'] = df['time_stamp'].dt.year
  203. df['month'] = df['time_stamp'].dt.month
  204. df['day'] = df['time_stamp'].dt.day
  205. df.sort_values(by='time_stamp', inplace=True)
  206. df['time_stamp'] = df['time_stamp'].apply(
  207. lambda x: x.strftime('%Y-%m-%d %H:%M:%S'))
  208. trans_print("处理时间字段结束")
  209. # 转化风机名称
  210. trans_print("开始转化风机名称")
  211. if self.trans_param.wind_name_exec:
  212. exec_str = f"df['wind_turbine_number'].apply(lambda wind_name: {self.trans_param.wind_name_exec} )"
  213. df['wind_turbine_number'] = eval(exec_str)
  214. df['wind_turbine_number'] = df['wind_turbine_number'].map(
  215. self.wind_col_trans).fillna(
  216. df['wind_turbine_number'])
  217. trans_print("转化风机名称结束")
  218. wind_col_name = str(df['wind_turbine_number'].values[0])
  219. if self.save_zip:
  220. save_path = os.path.join(self.get_save_path(), str(wind_col_name) + '.csv.gz')
  221. else:
  222. save_path = os.path.join(self.get_save_path(), str(wind_col_name) + '.csv')
  223. create_file_path(save_path, is_file_path=True)
  224. if self.save_zip:
  225. df.to_csv(save_path, compression='gzip', index=False, encoding='utf-8')
  226. else:
  227. df.to_csv(save_path, index=False, encoding='utf-8')
  228. self.set_statistics_data(df)
  229. del df
  230. trans_print("保存" + str(filename) + ".csv成功")
  231. def remove_file_to_tmp_path(self):
  232. # 读取文件
  233. try:
  234. if os.path.isfile(self.trans_param.read_path):
  235. all_files = [self.trans_param.read_path]
  236. else:
  237. all_files = read_files(self.trans_param.read_path)
  238. with multiprocessing.Pool(6) as pool:
  239. pool.starmap(self.get_and_remove, [(i,) for i in all_files])
  240. all_files = read_excel_files(self.get_excel_tmp_path())
  241. trans_print('读取文件数量:', len(all_files))
  242. except Exception as e:
  243. logger.exception(e)
  244. message = "读取文件列表错误:" + self.trans_param.read_path + ",系统返回错误:" + str(e)
  245. update_trans_status_error(self.batch_no, self.trans_param.read_type, message, self.save_db)
  246. raise e
  247. return all_files
  248. def read_file_and_save_tmp(self):
  249. all_files = read_excel_files(self.get_excel_tmp_path())
  250. if self.trans_param.merge_columns:
  251. dfs_list = list()
  252. index_keys = [self.trans_param.cols_tran['time_stamp']]
  253. wind_col = self.trans_param.cols_tran['wind_turbine_number']
  254. if str(wind_col).startswith("$"):
  255. wind_col = 'wind_turbine_number'
  256. index_keys.append(wind_col)
  257. df_map = dict()
  258. with multiprocessing.Pool(6) as pool:
  259. dfs = pool.starmap(self.read_excel_to_df, [(file,) for file in all_files])
  260. for df in dfs:
  261. key = '-'.join(df.columns)
  262. if key in df_map.keys():
  263. df_map[key] = pd.concat([df_map[key], df])
  264. else:
  265. df_map[key] = df
  266. for k, df in df_map.items():
  267. df.drop_duplicates(inplace=True)
  268. df.set_index(keys=index_keys, inplace=True)
  269. df = df[~df.index.duplicated(keep='first')]
  270. dfs_list.append(df)
  271. df = pd.concat(dfs_list, axis=1)
  272. df.reset_index(inplace=True)
  273. try:
  274. self.df_save_to_tmp_file(df, "")
  275. except Exception as e:
  276. logger.exception(e)
  277. message = "合并列出现错误:" + str(e)
  278. update_trans_status_error(self.batch_no, self.trans_param.read_type, message, self.save_db)
  279. raise e
  280. else:
  281. all_arrays = split_array(all_files, 6)
  282. for arr in all_arrays:
  283. with multiprocessing.Pool(6) as pool:
  284. dfs = pool.starmap(self.read_excel_to_df, [(ar,) for ar in arr])
  285. try:
  286. for df in dfs:
  287. self.df_save_to_tmp_file(df)
  288. except Exception as e:
  289. logger.exception(e)
  290. message = "整理临时文件,系统返回错误:" + str(e)
  291. update_trans_status_error(self.batch_no, self.trans_param.read_type, message,
  292. self.save_db)
  293. raise e
  294. def mutiprocessing_to_save_file(self):
  295. # 开始保存到正式文件
  296. trans_print("开始保存到excel文件")
  297. all_tmp_files = read_excel_files(self.get_read_tmp_path())
  298. try:
  299. with multiprocessing.Pool(6) as pool:
  300. pool.starmap(self.save_to_csv, [(file,) for file in all_tmp_files])
  301. except Exception as e:
  302. logger.exception(e)
  303. message = "保存文件错误,系统返回错误:" + str(e)
  304. update_trans_status_error(self.batch_no, self.trans_param.read_type, message, self.save_db)
  305. raise e
  306. trans_print("结束保存到excel文件")
  307. def mutiprocessing_to_save_db(self):
  308. # 开始保存到SQL文件
  309. trans_print("开始保存到数据库文件")
  310. all_saved_files = read_excel_files(self.get_save_path())
  311. table_name = self.batch_no + "_" + self.trans_param.read_type
  312. creat_table_and_add_partition(table_name, len(all_saved_files), self.trans_param.read_type)
  313. try:
  314. with multiprocessing.Pool(6) as pool:
  315. pool.starmap(save_file_to_db,
  316. [(table_name, file, self.batch_count) for file in all_saved_files])
  317. except Exception as e:
  318. logger.exception(e)
  319. message = "保存到数据库错误,系统返回错误:" + str(e)
  320. update_trans_status_error(self.batch_no, self.trans_param.read_type, message, self.save_db)
  321. raise e
  322. trans_print("结束保存到数据库文件")
  323. def _rename_file(self):
  324. save_path = self.get_save_path()
  325. files = os.listdir(save_path)
  326. files.sort(key=lambda x: int(str(x).split(os.sep)[-1].split(".")[0][1:]))
  327. for index, file in enumerate(files):
  328. file_path = os.path.join(save_path, 'F' + str(index + 1).zfill(3) + ".csv.gz")
  329. os.rename(os.path.join(save_path, file), file_path)
  330. def delete_batch_files(self):
  331. trans_print("开始删除已存在的批次文件夹")
  332. if os.path.exists(self.get_save_path()):
  333. shutil.rmtree(self.get_save_path())
  334. trans_print("删除已存在的批次文件夹")
  335. def delete_tmp_files(self):
  336. trans_print("开始删除临时文件夹")
  337. if os.path.exists(self.get_save_tmp_path()):
  338. shutil.rmtree(self.get_save_tmp_path())
  339. trans_print("删除临时文件夹删除成功")
  340. def delete_batch_db(self):
  341. table_name = "_".join([self.batch_no, self.trans_param.read_type])
  342. renamed_table_name = "del_" + table_name + "_" + datetime.datetime.now().strftime('%Y%m%d%H%M%S')
  343. rename_table(table_name, renamed_table_name)
  344. def run(self, step=0, end=3):
  345. begin = datetime.datetime.now()
  346. trans_print("开始执行")
  347. update_trans_status_running(self.batch_no, self.trans_param.read_type, self.save_db)
  348. if step <= 0 and end >= 0:
  349. tmp_begin = datetime.datetime.now()
  350. trans_print("开始初始化字段")
  351. self.delete_batch_files()
  352. self.delete_batch_db()
  353. self.params_valid([self.batch_no, self.field_code, self.save_path, self.trans_param.read_type,
  354. self.trans_param.read_path, self.wind_full_name])
  355. if self.trans_param.resolve_col_prefix:
  356. column = "测试"
  357. eval(self.trans_param.resolve_col_prefix)
  358. if self.trans_param.wind_name_exec:
  359. wind_name = "测试"
  360. eval(self.trans_param.wind_name_exec)
  361. trans_print("初始化字段结束,耗时:", str(datetime.datetime.now() - tmp_begin), ",总耗时:",
  362. str(datetime.datetime.now() - begin))
  363. if step <= 1 and end >= 1:
  364. # 更新运行状态到运行中
  365. tmp_begin = datetime.datetime.now()
  366. self.delete_tmp_files()
  367. trans_print("开始保存到临时路径")
  368. # 开始读取数据并分类保存临时文件
  369. self.remove_file_to_tmp_path()
  370. trans_print("保存到临时路径结束,耗时:", str(datetime.datetime.now() - tmp_begin), ",总耗时:",
  371. str(datetime.datetime.now() - begin))
  372. if step <= 2 and end >= 2:
  373. # 更新运行状态到运行中
  374. tmp_begin = datetime.datetime.now()
  375. trans_print("开始保存到临时文件")
  376. # 开始读取数据并分类保存临时文件
  377. self.read_file_and_save_tmp()
  378. trans_print("保存到临时文件结束,耗时:", str(datetime.datetime.now() - tmp_begin), ",总耗时:",
  379. str(datetime.datetime.now() - begin))
  380. if step <= 3 and end >= 3:
  381. tmp_begin = datetime.datetime.now()
  382. trans_print("开始保存到文件")
  383. self.mutiprocessing_to_save_file()
  384. self.save_statistics_file()
  385. trans_print("保存到文件结束,耗时:", str(datetime.datetime.now() - tmp_begin), ",总耗时:",
  386. str(datetime.datetime.now() - begin))
  387. if step <= 4 and end >= 4:
  388. if self.save_db:
  389. trans_print("开始保存到数据库")
  390. tmp_begin = datetime.datetime.now()
  391. self.mutiprocessing_to_save_db()
  392. trans_print("保存到数据库结束,耗时:", str(datetime.datetime.now() - tmp_begin), ",总耗时:",
  393. str(datetime.datetime.now() - begin))
  394. # 如果end==0 则说明只是进行了验证
  395. if end != 0:
  396. update_trans_status_success(self.batch_no, self.trans_param.read_type,
  397. len(read_excel_files(self.get_read_tmp_path())), self.save_db)
  398. self.delete_tmp_files()
  399. trans_print("结束执行", self.trans_param.read_type, ",总耗时:",
  400. str(datetime.datetime.now() - begin))