ClassIdentifier.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. import datetime
  2. import numpy as np
  3. from pandas import DataFrame
  4. from utils.file.trans_methods import read_file_to_df
  5. from utils.log.trans_log import trans_print
  6. from utils.systeminfo.sysinfo import print_memory_usage
  7. class ClassIdentifier(object):
  8. """
  9. 分类标识 -1:停机 0:好点 1:欠发功率点;2:超发功率点;3:额定风速以上的超发功率点 4: 限电
  10. """
  11. def __init__(self, wind_turbine_number=None, origin_df: DataFrame = None,
  12. wind_velocity='wind_velocity',
  13. active_power='active_power',
  14. pitch_angle_blade='pitch_angle_blade_1',
  15. rated_power=1500, cut_out_speed=3, file_path: str = None):
  16. """
  17. :param file_path: The file path of the input data.
  18. :param origin_df: The pandas DataFrame containing the input data.
  19. :param wind_velocity: 风速字段
  20. :param active_power: 有功功率字段
  21. :param pitch_angle_blade: 桨距角
  22. :param rated_power: 额定功率
  23. :param cut_out_speed: 切出风速
  24. """
  25. self.wind_turbine_number = wind_turbine_number
  26. self.wind_velocity = wind_velocity
  27. self.active_power = active_power
  28. self.pitch_angle_blade = pitch_angle_blade
  29. self.rated_power = rated_power # 额定功率1500kw,可改为2000kw
  30. self.cut_out_speed = cut_out_speed
  31. if self.rated_power is None:
  32. trans_print(wind_turbine_number, "WARNING:rated_power配置为空的")
  33. self.rated_power = 1500
  34. if self.cut_out_speed is None:
  35. trans_print(cut_out_speed, "WARNING:cut_out_speed配置为空的")
  36. self.cut_out_speed = 3
  37. if file_path is None and origin_df is None:
  38. raise ValueError("Either file_path or origin_df should be provided.")
  39. if file_path:
  40. self.df = read_file_to_df(file_path)
  41. else:
  42. self.df = origin_df
  43. def identifier(self):
  44. # 风速 和 有功功率 df
  45. # self.df = self.df[[self.wind_velocity, self.active_power, "pitch_angle_blade_1"]]
  46. self.df.reset_index(inplace=True)
  47. wind_and_power_df_count = self.df.shape[0]
  48. power_max = self.df[self.active_power].max()
  49. power_rated = np.ceil(power_max / 100) * 100
  50. v_cut_out = self.cut_out_speed
  51. # 网格法确定风速风向分区数量,功率方向分区数量,
  52. power_num = int(np.ceil(power_rated / 25)) # 功率分区间隔25kW
  53. velocity_num = int(np.ceil(v_cut_out / 0.25)) # 风速分区间隔0.25m/s
  54. # 存储功率大于零的运行数据
  55. dz_march = np.zeros([wind_and_power_df_count, 2], dtype=float)
  56. n_counter1 = 0
  57. for i in range(wind_and_power_df_count):
  58. if self.df.loc[i, self.active_power] > 0:
  59. dz_march[n_counter1, 0] = self.df.loc[i, self.wind_velocity]
  60. dz_march[n_counter1, 1] = self.df.loc[i, self.active_power]
  61. n_counter1 = n_counter1 + 1
  62. # 统计各网格落入的散点个数
  63. x_box_number = np.ones([power_num, velocity_num], dtype=int)
  64. n_which_p = -1
  65. n_which_v = -1
  66. for i in range(n_counter1):
  67. for m in range(power_num):
  68. if m * 25 < dz_march[i, 1] <= (m + 1) * 25:
  69. n_which_p = m
  70. break
  71. for n in range(velocity_num):
  72. if ((n + 1) * 0.25 - 0.125) < dz_march[i, 0] <= ((n + 1) * 0.25 + 0.125):
  73. n_which_v = n
  74. break
  75. if n_which_p > -1 and n_which_v > -1:
  76. x_box_number[n_which_p, n_which_v] = x_box_number[n_which_p, n_which_v] + 1
  77. for m in range(power_num):
  78. for n in range(velocity_num):
  79. x_box_number[m, n] = x_box_number[m, n] - 1
  80. # 在功率方向将网格内散点绝对个数转换为相对百分比,备用
  81. p_box_percent = np.zeros([power_num, velocity_num], dtype=float)
  82. p_bin_sum = np.zeros(power_num, dtype=int)
  83. for i in range(power_num):
  84. for m in range(velocity_num):
  85. p_bin_sum[i] = p_bin_sum[i] + x_box_number[i, m]
  86. for m in range(velocity_num):
  87. if p_bin_sum[i] > 0:
  88. p_box_percent[i, m] = x_box_number[i, m] / p_bin_sum[i] * 100
  89. # 在风速方向将网格内散点绝对个数转换为相对百分比,备用
  90. v_box_percent = np.zeros([power_num, velocity_num], dtype=float)
  91. v_bin_sum = np.zeros(velocity_num, dtype=int)
  92. for i in range(velocity_num):
  93. for m in range(power_num):
  94. v_bin_sum[i] = v_bin_sum[i] + x_box_number[m, i]
  95. for m in range(power_num):
  96. if v_bin_sum[i] > 0:
  97. v_box_percent[m, i] = x_box_number[m, i] / v_bin_sum[i] * 100
  98. # 以水平功率带方向为准,分析每个水平功率带中,功率主带中心,即找百分比最大的网格位置。
  99. p_box_max_index = np.zeros(power_num, dtype=int) # 水平功率带最大网格位置索引
  100. p_box_max_p = np.zeros(power_num, dtype=int) # 水平功率带最大网格百分比
  101. for m in range(power_num):
  102. # 确定每一水平功率带的最大网格位置索引即百分比值
  103. p_box_max_p[m], p_box_max_index[m] = p_box_percent[m, :].max(), p_box_percent[m, :].argmax()
  104. # 以垂直风速方向为准,分析每个垂直风速带中,功率主带中心,即找百分比最大的网格位置。
  105. v_box_max_index = np.zeros(velocity_num, dtype=int)
  106. v_box_max_v = np.zeros(velocity_num, dtype=int)
  107. for m in range(velocity_num):
  108. [v_box_max_v[m], v_box_max_index[m]] = v_box_percent[:, m].max(), v_box_percent[:, m].argmax()
  109. # 切入风速特殊处理,如果切入风速过于偏右,向左拉回
  110. if p_box_max_index[0] > 14:
  111. p_box_max_index[0] = 9
  112. # 以水平功率带方向为基准,进行分析
  113. dot_dense = np.zeros(power_num, dtype=int) # 每一水平功率带的功率主带包含的网格数
  114. dot_dense_left_right = np.zeros([power_num, 2], dtype=int) # 存储每一水平功率带的功率主带以最大网格为中心,向向左,向右扩展的网格数
  115. dot_valve = 90 # 从中心向左右对称扩展网格的散点百分比和的阈值。
  116. for i in range(power_num - 6): # 从最下层水平功率带1开始,向上到第PNum-6个水平功率带(额定功率一下水平功率带),逐一分析
  117. p_dot_dense_sum = p_box_max_p[i] # 以中心最大水平功率带为基准,向左向右对称扩展网格,累加各网格散点百分比
  118. i_spread_right = 1
  119. i_spread_left = 1
  120. while p_dot_dense_sum < dot_valve:
  121. if (p_box_max_index[i] + i_spread_right) < velocity_num - 1:
  122. p_dot_dense_sum = p_dot_dense_sum + p_box_percent[i, p_box_max_index[i] + i_spread_right] # 向右侧扩展
  123. i_spread_right = i_spread_right + 1
  124. if (p_box_max_index[i] + i_spread_right) > velocity_num - 1:
  125. break
  126. if (p_box_max_index[i] - i_spread_left) > 0:
  127. p_dot_dense_sum = p_dot_dense_sum + p_box_percent[i, p_box_max_index[i] - i_spread_left] # 向左侧扩展
  128. i_spread_left = i_spread_left + 1
  129. if (p_box_max_index[i] - i_spread_left) <= 0:
  130. break
  131. i_spread_right = i_spread_right - 1
  132. i_spread_left = i_spread_left - 1
  133. # 向左右对称扩展完毕
  134. dot_dense_left_right[i, 0] = i_spread_left
  135. dot_dense_left_right[i, 1] = i_spread_right
  136. dot_dense[i] = i_spread_left + i_spread_right + 1
  137. # 各行功率主带右侧宽度的中位数最具有代表性
  138. dot_dense_width_left = np.zeros([power_num - 6, 1], dtype=int)
  139. for i in range(power_num - 6):
  140. dot_dense_width_left[i] = dot_dense_left_right[i, 1]
  141. main_band_right = np.median(dot_dense_width_left)
  142. # 散点向右显著延展分布的水平功率带为限功率水平带
  143. power_limit = np.zeros([power_num, 1], dtype=int) # 各水平功率带是否为限功率标识,==1:是;==0:不是
  144. width_average = 0 # 功率主带平均宽度
  145. width_var = 0 # 功率主带方差
  146. # power_limit_valve = 6 #限功率主带判别阈值
  147. power_limit_valve = np.ceil(main_band_right) + 3 # 限功率主带判别阈值
  148. n_counter_limit = 0
  149. n_counter = 0
  150. for i in range(power_num - 6):
  151. if dot_dense_left_right[i, 1] > power_limit_valve and p_bin_sum[i] > 20: # 如果向右扩展网格数大于阈值,且该水平功率带点总数>20,是
  152. power_limit[i] = 1
  153. n_counter_limit = n_counter_limit + 1
  154. if dot_dense_left_right[i, 1] <= power_limit_valve:
  155. width_average = width_average + dot_dense_left_right[i, 1] # 统计正常水平功率带右侧宽度
  156. n_counter = n_counter + 1
  157. width_average = width_average / n_counter # 功率主带平均宽度
  158. # 各水平功率带的功率主带宽度的方差,反映从下到上宽度是否一致,或是否下宽上窄等异常情况
  159. for i in range(power_num - 6):
  160. if dot_dense_left_right[i, 1] <= power_limit_valve:
  161. width_var = width_var + (dot_dense_left_right[i, 1] - width_average) * (
  162. dot_dense_left_right[i, 1] - width_average)
  163. # 对限负荷水平功率带的最大网格较下面相邻层显著偏右,拉回
  164. for i in range(1, power_num - 6):
  165. if power_limit[i] == 1 and abs(p_box_max_index[i] - p_box_max_index[i - 1]) > 5:
  166. p_box_max_index[i] = p_box_max_index[i - 1] + 1
  167. # 输出各层功率主带的左右边界网格索引
  168. dot_dense_inverse = np.zeros([power_num, 2], dtype=int)
  169. for i in range(power_num):
  170. dot_dense_inverse[i, :] = dot_dense_left_right[power_num - i - 1, :]
  171. # 功率主带的右边界
  172. curve_width_r = int(np.ceil(width_average) + 2)
  173. # curve_width_l = 6 #功率主带的左边界
  174. curve_width_l = curve_width_r
  175. b_box_limit = np.zeros([power_num, velocity_num], dtype=int) # 网格是否为限功率网格的标识,如果为限功率水平功率带,从功率主带右侧边缘向右的网格为限功率网格
  176. for i in range(2, power_num - 6):
  177. if power_limit[i] == 1:
  178. for j in range(p_box_max_index[i] + curve_width_r, velocity_num):
  179. b_box_limit[i, j] = 1
  180. b_box_remove = np.zeros([power_num, velocity_num], dtype=int) # 数据异常需要剔除的网格标识,标识==1:功率主带右侧的欠发网格;==2:功率主带左侧的超发网格
  181. for m in range(power_num - 6):
  182. for n in range(p_box_max_index[m] + curve_width_r, velocity_num):
  183. b_box_remove[m, n] = 1
  184. for n in range(p_box_max_index[m] - curve_width_l, -1, -1):
  185. b_box_remove[m, n] = 2
  186. # 确定功率主带的左上拐点,即额定风速位置的网格索引
  187. curve_top = np.zeros(2, dtype=int)
  188. curve_top_valve = 3 # 网格的百分比阈值
  189. b_top_find = 0
  190. for m in range(power_num - 4 - 1, -1, -1):
  191. for n in range(velocity_num):
  192. if v_box_percent[m, n] > curve_top_valve and x_box_number[m, n] >= 10: # 如左上角网格的百分比和散点个数大于阈值。
  193. curve_top[0] = m
  194. curve_top[1] = n
  195. b_top_find = 1
  196. break
  197. if b_top_find == 1:
  198. break
  199. isolate_valve = 3
  200. for m in range(power_num - 6):
  201. for n in range(p_box_max_index[m] + curve_width_r, velocity_num):
  202. if p_box_percent[m, n] < isolate_valve:
  203. b_box_remove[m, n] = 1
  204. # 功率主带顶部宽度
  205. curve_width_t = 2
  206. for m in range(power_num - curve_width_t - 1, power_num):
  207. for n in range(velocity_num):
  208. b_box_remove[m, n] = 3 # 网格为额定功率以上的超发点
  209. # 功率主带拐点左侧的欠发网格标识
  210. for m in range(power_num - 5 - 1, power_num):
  211. for n in range(curve_top[1] - 1):
  212. b_box_remove[m, n] = 2
  213. # 以网格的标识,决定该网格内数据的标识。dzwind_and_power_sel。散点在哪个网格,此网格的标识即为该点的标识
  214. dzwind_and_power_sel = np.zeros(n_counter1, dtype=int) # -1:停机 0:好点 1:欠发功率点;2:超发功率点;3:额定风速以上的超发功率点 4: 限电
  215. n_which_p = -1
  216. n_which_v = -1
  217. n_bad_a = 0
  218. for i in range(n_counter1):
  219. for m in range(power_num):
  220. if m * 25 < dz_march[i, 1] <= (m + 1) * 25:
  221. n_which_p = m
  222. break
  223. for n in range(velocity_num):
  224. if ((n + 1) * 0.25 - 0.125) < dz_march[i, 0] <= ((n + 1) * 0.25 + 0.125):
  225. n_which_v = n
  226. break
  227. if n_which_p > -1 and n_which_v > -1:
  228. if b_box_remove[n_which_p, n_which_v] == 1:
  229. dzwind_and_power_sel[i] = 1
  230. n_bad_a = n_bad_a + 1
  231. if b_box_remove[n_which_p, n_which_v] == 2:
  232. dzwind_and_power_sel[i] = 2
  233. if b_box_remove[n_which_p, n_which_v] == 3:
  234. dzwind_and_power_sel[i] = 0 # 3 # 额定风速以上的超发功率点认为是正常点,不再标识。
  235. # 限负荷数据标识方法2:把数据切割为若干个窗口。对每一窗口,以第一个点为基准,连续nWindowLength个数据的功率在方差范围内,呈现显著水平分布的点
  236. n_window_length = 3
  237. limit_window = np.zeros(n_window_length, dtype=float)
  238. power_std = 15 # 功率波动方差
  239. n_window_num = int(np.floor(n_counter1 / n_window_length))
  240. power_limit_up = self.rated_power - 300
  241. power_limit_low = 200
  242. for i in range(n_window_num):
  243. for j in range(n_window_length):
  244. limit_window[j] = dz_march[i * n_window_length + j, 1]
  245. b_all_in_areas = 1
  246. for j in range(n_window_length):
  247. if limit_window[j] < power_limit_low or limit_window[j] > power_limit_up:
  248. b_all_in_areas = 0
  249. if b_all_in_areas == 0:
  250. continue
  251. up_limit = limit_window[0] + power_std
  252. low_limit = limit_window[0] - power_std
  253. b_all_in_up_low = 1
  254. for j in range(1, n_window_length):
  255. if limit_window[j] < low_limit or limit_window[j] > up_limit:
  256. b_all_in_up_low = 0
  257. if b_all_in_up_low == 1:
  258. for j in range(n_window_length):
  259. dzwind_and_power_sel[i * n_window_length + j] = 4 # 标识窗口内的数据为限负荷数据
  260. for i in range(power_num - 6):
  261. pv_left_down = np.zeros(2, dtype=float)
  262. pv_right_up = np.zeros(2, dtype=float)
  263. if (p_box_max_index[i + 1] - p_box_max_index[i]) >= 1:
  264. pv_left_down[0] = (p_box_max_index[i] + 1 + curve_width_r) * 0.25 - 0.125
  265. pv_left_down[1] = i * 25
  266. pv_right_up[0] = (p_box_max_index[i + 1] + 1 + curve_width_r) * 0.25 - 0.125
  267. pv_right_up[1] = (i + 1) * 25
  268. for m in range(n_counter1):
  269. if pv_left_down[0] < dz_march[m, 0] < pv_right_up[0] and pv_left_down[1] < \
  270. dz_march[m, 1] < pv_right_up[1]: # 在该锯齿中
  271. if (dz_march[m, 1] - pv_left_down[1]) / (dz_march[m, 0] - pv_left_down[0]) > (
  272. pv_right_up[1] - pv_left_down[1]) / (
  273. pv_right_up[0] - pv_left_down[0]): # 斜率大于对角连线,则在锯齿左上三角形中,选中
  274. dzwind_and_power_sel[m] = 0
  275. self.df.loc[:, 'lab'] = -1
  276. self.df.loc[
  277. self.df[self.df[self.active_power] > 0].index, 'lab'] = dzwind_and_power_sel
  278. # 把部分欠发的优化为限电
  279. # 构建条件表达式
  280. cond1 = (self.df['lab'] == 1) & (
  281. (self.df[self.active_power] < self.rated_power * 0.75) &
  282. (self.df[self.pitch_angle_blade] > 0.5)
  283. )
  284. cond2 = (self.df['lab'] == 1) & (
  285. (self.df[self.active_power] < self.rated_power * 0.85) &
  286. (self.df[self.pitch_angle_blade] > 1.5)
  287. )
  288. cond3 = (self.df['lab'] == 1) & (
  289. (self.df[self.active_power] < self.rated_power * 0.9) &
  290. (self.df[self.pitch_angle_blade] > 2.5)
  291. )
  292. # 使用逻辑或操作符|合并条件
  293. combined_condition = cond1 | cond2 | cond3
  294. self.df.loc[combined_condition, 'lab'] = 4
  295. self.df.loc[self.df[self.active_power] <= 0, 'lab'] = -1
  296. self.df.reset_index(drop=True, inplace=True)
  297. if 'index' in self.df.columns:
  298. del self.df['index']
  299. return self.df
  300. def run(self):
  301. # Implement your class identification logic here
  302. print_memory_usage(self.wind_turbine_number + "开始打标签")
  303. begin = datetime.datetime.now()
  304. df = self.identifier()
  305. trans_print("打标签结束,", df.shape, ",耗时:", datetime.datetime.now() - begin)
  306. print_memory_usage(self.wind_turbine_number + "打标签结束,")
  307. return df