ReadAndSaveTmp.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366
  1. import base64
  2. import datetime
  3. import multiprocessing
  4. import traceback
  5. from os import *
  6. import pandas as pd
  7. from etl.common.PathsAndTable import PathsAndTable
  8. from etl.wind_power.min_sec import TransParam
  9. from service.plt_service import update_trans_transfer_progress
  10. from utils.file.trans_methods import read_excel_files, split_array, del_blank, \
  11. create_file_path, read_file_to_df, valid_eval
  12. from utils.log.trans_log import trans_print
  13. from utils.systeminfo.sysinfo import use_files_get_max_cpu_count, get_dir_size, max_file_size_get_max_cpu_count
  14. class ReadAndSaveTmp(object):
  15. def __init__(self, pathsAndTable: PathsAndTable, trans_param: TransParam):
  16. self.pathsAndTable = pathsAndTable
  17. self.trans_param = trans_param
  18. self.exist_wind_names = multiprocessing.Manager().list()
  19. self.lock = multiprocessing.Manager().Lock()
  20. self.file_lock = multiprocessing.Manager().dict()
  21. def _save_to_tmp_csv_by_name(self, df, name):
  22. save_name = str(name) + '.csv'
  23. save_path = path.join(self.pathsAndTable.get_read_tmp_path(), save_name)
  24. create_file_path(save_path, is_file_path=True)
  25. with self.lock:
  26. if name in self.exist_wind_names:
  27. contains_name = True
  28. else:
  29. contains_name = False
  30. self.exist_wind_names.append(name)
  31. if contains_name:
  32. df.to_csv(save_path, index=False, encoding='utf8', mode='a',
  33. header=False)
  34. else:
  35. df.to_csv(save_path, index=False, encoding='utf8')
  36. def save_merge_data(self, file_path):
  37. df = self.read_excel_to_df(file_path)
  38. if self.trans_param.wind_name_exec:
  39. if valid_eval(self.trans_param.wind_name_exec):
  40. exec_str = f"df['wind_turbine_number'].apply(lambda wind_name: {self.trans_param.wind_name_exec} )"
  41. df['wind_turbine_number'] = eval(exec_str)
  42. df = self.trans_df_cols(df)
  43. wind_names = set(df['wind_turbine_number'].values)
  44. cols = list(df.columns)
  45. cols.sort()
  46. for wind_name in wind_names:
  47. for col in df.columns:
  48. if col not in ['wind_turbine_number', 'time_stamp']:
  49. csv_name = str(col) + ".csv"
  50. exist_name = wind_name + '-' + csv_name
  51. merge_path = self.pathsAndTable.get_merge_tmp_path(wind_name)
  52. create_file_path(merge_path)
  53. with self.lock:
  54. if exist_name in self.exist_wind_names:
  55. contains_name = True
  56. else:
  57. contains_name = False
  58. self.exist_wind_names.append(exist_name)
  59. save_path = path.join(merge_path, csv_name)
  60. now_df = df[df['wind_turbine_number'] == wind_name][['time_stamp', col]]
  61. if contains_name:
  62. now_df.to_csv(save_path, index=False, encoding='utf-8', mode='a',
  63. header=False)
  64. else:
  65. now_df.to_csv(save_path, index=False, encoding='utf-8')
  66. def trans_df_cols(self, df):
  67. if self.trans_param.is_vertical_table:
  68. pass
  69. else:
  70. # 转换字段
  71. same_col = {}
  72. if self.trans_param.cols_tran:
  73. cols_tran = self.trans_param.cols_tran
  74. real_cols_trans = dict()
  75. for k, v in cols_tran.items():
  76. if v and not v.startswith("$"):
  77. if v not in real_cols_trans.keys():
  78. real_cols_trans[v] = k
  79. else:
  80. value = real_cols_trans[v]
  81. if value in same_col.keys():
  82. same_col[value].append(k)
  83. else:
  84. same_col[value] = [k]
  85. df.rename(columns=real_cols_trans, inplace=True)
  86. # 添加使用同一个excel字段的值
  87. for key in same_col.keys():
  88. for col in same_col[key]:
  89. df[col] = df[key]
  90. del_keys = set(df.columns) - set(cols_tran.keys())
  91. for key in del_keys:
  92. df.drop(key, axis=1, inplace=True)
  93. return df
  94. def df_save_to_tmp_file(self, df=pd.DataFrame()):
  95. df = self.trans_df_cols(df)
  96. df = del_blank(df, ['wind_turbine_number'])
  97. df = df[df['time_stamp'].isna() == False]
  98. if self.trans_param.wind_name_exec and not self.trans_param.merge_columns:
  99. if valid_eval(self.trans_param.wind_name_exec):
  100. exec_str = f"df['wind_turbine_number'].apply(lambda wind_name: {self.trans_param.wind_name_exec} )"
  101. df['wind_turbine_number'] = eval(exec_str)
  102. self.save_to_tmp_csv(df)
  103. def save_to_tmp_csv(self, df):
  104. names = set(df['wind_turbine_number'].values)
  105. if names:
  106. trans_print("开始保存", str(names), "到临时文件", df.shape)
  107. for name in names:
  108. self._save_to_tmp_csv_by_name(df[df['wind_turbine_number'] == name], name)
  109. del df
  110. trans_print("保存", str(names), "到临时文件成功, 风机数量", len(names))
  111. def merge_df(self, dir_path):
  112. all_files = read_excel_files(dir_path)
  113. wind_turbine_number = path.basename(dir_path)
  114. df = pd.DataFrame()
  115. for file in all_files:
  116. now_df = read_file_to_df(file)
  117. now_df['wind_turbine_number'] = wind_turbine_number
  118. now_df.dropna(subset=['time_stamp'], inplace=True)
  119. now_df.drop_duplicates(subset=['time_stamp'], inplace=True)
  120. now_df.set_index(keys=['time_stamp', 'wind_turbine_number'], inplace=True)
  121. df = pd.concat([df, now_df], axis=1)
  122. df.reset_index(inplace=True)
  123. self.df_save_to_tmp_file(df)
  124. return df
  125. def read_file_and_save_tmp(self):
  126. all_files = read_excel_files(self.pathsAndTable.get_excel_tmp_path())
  127. split_count = use_files_get_max_cpu_count(all_files)
  128. all_arrays = split_array(all_files, split_count)
  129. if self.trans_param.merge_columns:
  130. for index, arr in enumerate(all_arrays):
  131. try:
  132. with multiprocessing.Pool(split_count) as pool:
  133. pool.starmap(self.save_merge_data, [(ar,) for ar in arr])
  134. except Exception as e:
  135. trans_print(traceback.format_exc())
  136. message = "整理临时文件,系统返回错误:" + str(e)
  137. raise ValueError(message)
  138. update_trans_transfer_progress(self.pathsAndTable.batch_no, self.pathsAndTable.read_type,
  139. round(20 + 20 * (index + 1) / len(all_arrays), 2),
  140. self.pathsAndTable.save_db)
  141. dirs = [path.join(self.pathsAndTable.get_merge_tmp_path(), dir_name) for dir_name in
  142. listdir(self.pathsAndTable.get_merge_tmp_path())]
  143. dir_total_size = get_dir_size(dirs[0])
  144. # split_count = max_file_size_get_max_cpu_count(dir_total_size, memory_percent=1 / 12, cpu_percent=1 / 10)
  145. split_count = 2
  146. all_arrays = split_array(dirs, split_count)
  147. for index, arr in enumerate(all_arrays):
  148. try:
  149. with multiprocessing.Pool(split_count) as pool:
  150. pool.starmap(self.merge_df, [(ar,) for ar in arr])
  151. except Exception as e:
  152. trans_print(traceback.format_exc())
  153. message = "整理临时文件,系统返回错误:" + str(e)
  154. raise ValueError(message)
  155. update_trans_transfer_progress(self.pathsAndTable.batch_no, self.pathsAndTable.read_type,
  156. round(20 + 30 * (index + 1) / len(all_arrays), 2),
  157. self.pathsAndTable.save_db)
  158. else:
  159. for index, arr in enumerate(all_arrays):
  160. try:
  161. with multiprocessing.Pool(split_count) as pool:
  162. dfs = pool.starmap(self.read_excel_to_df, [(ar,) for ar in arr])
  163. for df in dfs:
  164. self.df_save_to_tmp_file(df)
  165. except Exception as e:
  166. trans_print(traceback.format_exc())
  167. message = "整理临时文件,系统返回错误:" + str(e)
  168. raise ValueError(message)
  169. update_trans_transfer_progress(self.pathsAndTable.batch_no, self.pathsAndTable.read_type,
  170. round(20 + 30 * (index + 1) / len(all_arrays), 2),
  171. self.pathsAndTable.save_db)
  172. def read_excel_to_df(self, file_path):
  173. read_cols = [v.split(",")[0] for k, v in self.trans_param.cols_tran.items() if v and not v.startswith("$")]
  174. trans_dict = {}
  175. for k, v in self.trans_param.cols_tran.items():
  176. if v and not str(v).startswith("$"):
  177. trans_dict[v] = k
  178. if self.trans_param.is_vertical_table:
  179. vertical_cols = self.trans_param.vertical_cols
  180. df = read_file_to_df(file_path, vertical_cols, trans_cols=self.trans_param.vertical_cols)
  181. df = df[df[self.trans_param.vertical_key].isin(read_cols)]
  182. df.rename(columns={self.trans_param.cols_tran['wind_turbine_number']: 'wind_turbine_number',
  183. self.trans_param.cols_tran['time_stamp']: 'time_stamp'}, inplace=True)
  184. df[self.trans_param.vertical_key] = df[self.trans_param.vertical_key].map(trans_dict).fillna(
  185. df[self.trans_param.vertical_key])
  186. return df
  187. else:
  188. trans_dict = dict()
  189. trans_cols = []
  190. for k, v in self.trans_param.cols_tran.items():
  191. if v and v.startswith("$") or v.find(",") > 0:
  192. trans_dict[v] = k
  193. if v.find("|") > -1:
  194. vs = v.split("|")
  195. trans_cols.extend(vs)
  196. else:
  197. trans_cols.append(v)
  198. trans_cols = list(set(trans_cols))
  199. if self.trans_param.merge_columns:
  200. df = read_file_to_df(file_path, trans_cols=trans_cols, not_find_header='ignore',
  201. resolve_col_prefix=self.trans_param.resolve_col_prefix)
  202. else:
  203. if self.trans_param.need_valid_cols:
  204. df = read_file_to_df(file_path, read_cols, trans_cols=trans_cols)
  205. else:
  206. df = read_file_to_df(file_path, trans_cols=trans_cols)
  207. # 处理列名前缀问题
  208. if self.trans_param.resolve_col_prefix:
  209. columns_dict = dict()
  210. if valid_eval(self.trans_param.resolve_col_prefix):
  211. for column in df.columns:
  212. columns_dict[column] = eval(self.trans_param.resolve_col_prefix)
  213. df.rename(columns=columns_dict, inplace=True)
  214. if self.trans_param.merge_columns:
  215. select_cols = [self.trans_param.cols_tran['wind_turbine_number'],
  216. self.trans_param.cols_tran['time_stamp'],
  217. 'wind_turbine_number', 'time_stamp']
  218. select_cols.extend(trans_cols)
  219. rename_dict = dict()
  220. wind_turbine_number_col = self.trans_param.cols_tran['wind_turbine_number']
  221. if wind_turbine_number_col.find("|") > -1:
  222. cols = wind_turbine_number_col.split("|")
  223. for col in cols:
  224. rename_dict[col] = 'wind_turbine_number'
  225. time_stamp_col = self.trans_param.cols_tran['time_stamp']
  226. if time_stamp_col.find("|") > -1:
  227. cols = time_stamp_col.split("|")
  228. for col in cols:
  229. rename_dict[col] = 'time_stamp'
  230. df.rename(columns=rename_dict, inplace=True)
  231. for col in df.columns:
  232. if col not in select_cols:
  233. del df[col]
  234. for k, v in trans_dict.items():
  235. if k.startswith("$file"):
  236. file = ".".join(path.basename(file_path).split(".")[0:-1])
  237. if k == "$file":
  238. ks = k.split("|")
  239. bool_contains = False
  240. for k_data in ks:
  241. if k_data in df.columns or v in df.columns:
  242. bool_contains = True
  243. if not bool_contains:
  244. df[v] = str(file)
  245. elif k.startswith("$file["):
  246. ks = k.split("|")
  247. bool_contains = False
  248. for k_data in ks:
  249. if k_data in df.columns or v in df.columns:
  250. bool_contains = True
  251. if not bool_contains:
  252. datas = str(ks[0].replace("$file", "").replace("[", "").replace("]", "")).split(":")
  253. if len(datas) != 2:
  254. raise Exception("字段映射出现错误 :" + str(trans_dict))
  255. df[v] = str(file[int(datas[0]):int(datas[1])]).strip()
  256. elif k.startswith("$file.split"):
  257. ks = k.split("|")
  258. bool_contains = False
  259. for k_data in ks:
  260. if k_data in df.columns or v in df.columns:
  261. bool_contains = True
  262. if not bool_contains:
  263. datas = str(ks[0]).replace("$file.split(", "").replace(")", "").split(",")
  264. split_str = str(datas[0])
  265. split_index = int(datas[1])
  266. df[v] = str(file.split(split_str)[split_index])
  267. elif k.find("$file_date") > 0:
  268. datas = str(k.split(",")[1].replace("$file_date", "").replace("[", "").replace("]", "")).split(":")
  269. if len(datas) != 2:
  270. raise Exception("字段映射出现错误 :" + str(trans_dict))
  271. file = ".".join(path.basename(file_path).split(".")[0:-1])
  272. date_str = str(file[int(datas[0]):int(datas[1])]).strip()
  273. df[v] = df[k.split(",")[0]].apply(lambda x: date_str + " " + str(x))
  274. elif k.startswith("$folder"):
  275. folder = file_path
  276. ks = k.split("|")
  277. bool_contains = False
  278. for k_data in ks:
  279. if k_data in df.columns or v in df.columns:
  280. bool_contains = True
  281. if not bool_contains:
  282. cengshu = int(str(ks[0].replace("$folder", "").replace("[", "").replace("]", "")))
  283. for i in range(cengshu):
  284. folder = path.dirname(folder)
  285. df[v] = str(str(folder).split(sep)[-1]).strip()
  286. elif k.startswith("$sheet_name"):
  287. df[v] = df['sheet_name']
  288. if 'time_stamp' not in df.columns:
  289. cols_trans = [i for i in self.trans_param.cols_tran['time_stamp'].split('|')]
  290. cols_dict = dict()
  291. for col in cols_trans:
  292. cols_dict[col] = 'time_stamp'
  293. df.rename(columns=cols_dict, inplace=True)
  294. if 'wind_turbine_number' not in df.columns:
  295. cols_trans = [i for i in self.trans_param.cols_tran['wind_turbine_number'].split('|')]
  296. cols_dict = dict()
  297. for col in cols_trans:
  298. cols_dict[col] = 'wind_turbine_number'
  299. df.rename(columns=cols_dict, inplace=True)
  300. return df
  301. def run(self):
  302. trans_print("开始保存数据到临时文件")
  303. begin = datetime.datetime.now()
  304. self.read_file_and_save_tmp()
  305. update_trans_transfer_progress(self.pathsAndTable.batch_no, self.pathsAndTable.read_type, 50,
  306. self.pathsAndTable.save_db)
  307. trans_print("保存数据到临时文件结束,耗时:", datetime.datetime.now() - begin)