123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- import multiprocessing
- import traceback
- from os import path
- import numpy as np
- import pandas as pd
- from etl.common.PathsAndTable import PathsAndTable
- from etl.wind_power.min_sec import TransParam
- from etl.wind_power.min_sec.ClassIdentifier import ClassIdentifier
- from service.trans_conf_service import update_trans_transfer_progress
- from utils.conf.read_conf import read_conf
- from utils.df_utils.util import get_time_space
- from utils.file.trans_methods import create_file_path, read_excel_files, read_file_to_df, split_array
- from utils.log.trans_log import trans_print
- from utils.systeminfo.sysinfo import use_files_get_max_cpu_count
- exec("import math")
- class StatisticsAndSaveTmpFormalFile(object):
- def __init__(self, paths_and_table: PathsAndTable, trans_param: TransParam, statistics_map,
- rated_power_and_cutout_speed_map):
- self.paths_and_table = paths_and_table
- self.trans_param = trans_param
- self.statistics_map = statistics_map
- self.lock = multiprocessing.Manager().Lock()
- self.rated_power_and_cutout_speed_map = rated_power_and_cutout_speed_map
- def set_statistics_data(self, df):
- if not df.empty:
- df['time_stamp'] = pd.to_datetime(df['time_stamp'])
- min_date = df['time_stamp'].min()
- max_date = df['time_stamp'].max()
- with self.lock:
- if 'min_date' in self.statistics_map.keys():
- if self.statistics_map['min_date'] > min_date:
- self.statistics_map['min_date'] = min_date
- else:
- self.statistics_map['min_date'] = min_date
- if 'max_date' in self.statistics_map.keys():
- if self.statistics_map['max_date'] < max_date:
- self.statistics_map['max_date'] = max_date
- else:
- self.statistics_map['max_date'] = max_date
- if 'total_count' in self.statistics_map.keys():
- self.statistics_map['total_count'] = self.statistics_map['total_count'] + df.shape[0]
- else:
- self.statistics_map['total_count'] = df.shape[0]
- if 'time_granularity' not in self.statistics_map.keys():
- self.statistics_map['time_granularity'] = get_time_space(df, 'time_stamp')
- def save_to_csv(self, filename):
- df = read_file_to_df(filename)
- if self.trans_param.is_vertical_table:
- df = df.pivot_table(index=['time_stamp', 'wind_turbine_number'], columns=self.trans_param.vertical_key,
- values=self.trans_param.vertical_value,
- aggfunc='max')
- # 重置索引以得到普通的列
- df.reset_index(inplace=True)
- # 转化风机名称
- origin_wind_name = str(df['wind_turbine_number'].values[0])
- df['wind_turbine_number'] = df['wind_turbine_number'].astype('str')
- # df['wind_turbine_name'] = df['wind_turbine_number']
- df['wind_turbine_number'] = df['wind_turbine_number'].map(
- self.trans_param.wind_col_trans).fillna(df['wind_turbine_number'])
- wind_col_name = str(df['wind_turbine_number'].values[0])
- not_double_cols = ['wind_turbine_number', 'wind_turbine_name', 'time_stamp', 'param6', 'param7', 'param8',
- 'param9', 'param10']
- # 删除 有功功率 和 风速均为空的情况
- df.dropna(subset=['active_power', 'wind_velocity'], how='all', inplace=True)
- trans_print(origin_wind_name, wind_col_name, "删除有功功率和风速均为空的情况后:", df.shape)
- df.replace(np.nan, -999999999, inplace=True)
- number_cols = df.select_dtypes(include=['number']).columns.tolist()
- for col in df.columns:
- if col not in not_double_cols and col not in number_cols:
- if not df[col].isnull().all():
- df[col] = pd.to_numeric(df[col], errors='coerce')
- # 删除包含NaN的行(即那些列A转换失败的行)
- df = df.dropna(subset=[col])
- trans_print(origin_wind_name, wind_col_name, "删除非数值列名:", col)
- df.replace(-999999999, np.nan, inplace=True)
- df.drop_duplicates(['wind_turbine_number', 'time_stamp'], keep='first', inplace=True)
- df['time_stamp'] = pd.to_datetime(df['time_stamp'], errors="coerce")
- df.dropna(subset=['time_stamp'], inplace=True)
- df.sort_values(by='time_stamp', inplace=True)
- df = df[[i for i in self.trans_param.cols_tran.keys() if i in df.columns]]
- # 删除每行有空值的行
- origin_count = df.shape[0]
- df = df.dropna()
- trans_print(f'原始数据量:{origin_count},去除na后数据量:{df.shape[0]}')
- # 如果秒级有可能合并到分钟级
- # TODO add 秒转分钟
- if self.trans_param.boolean_sec_to_min:
- df['time_stamp'] = df['time_stamp'].apply(lambda x: x + pd.Timedelta(minutes=(10 - x.minute % 10) % 10))
- df['time_stamp'] = df['time_stamp'].dt.floor('10T')
- df = df.groupby(['wind_turbine_number', 'time_stamp']).mean().reset_index()
- trans_print('有功功率前10个', df.head(10)['active_power'].values)
- power_df = df[df['active_power'] > 0]
- trans_print(origin_wind_name, wind_col_name, "功率大于0的数量:", power_df.shape)
- power = power_df.sample(int(power_df.shape[0] / 100))['active_power'].median()
- del power_df
- trans_print(origin_wind_name, wind_col_name, '有功功率,中位数', power)
- if power > 100000:
- df['active_power'] = df['active_power'] / 1000
- ## 做数据检测前,羡强行处理有功功率
- # df = df[df['active_power'] < 50000]
- rated_power_and_cutout_speed_tuple = read_conf(self.rated_power_and_cutout_speed_map, str(wind_col_name))
- if rated_power_and_cutout_speed_tuple is None:
- rated_power_and_cutout_speed_tuple = (None, None)
- # 如果有需要处理的,先进行代码处理,在进行打标签
- # exec_code = get_trans_exec_code(self.paths_and_table.exec_id, self.paths_and_table.read_type)
- # if exec_code:
- # if 'import ' in exec_code:
- # raise Exception("执行代码不支持导入包")
- # exec(exec_code)
- class_identifiler = ClassIdentifier(wind_turbine_number=origin_wind_name, origin_df=df,
- rated_power=rated_power_and_cutout_speed_tuple[0],
- cut_out_speed=rated_power_and_cutout_speed_tuple[1])
- df = class_identifiler.run()
- df['year'] = df['time_stamp'].dt.year
- df['month'] = df['time_stamp'].dt.month
- df['day'] = df['time_stamp'].dt.day
- df['time_stamp'] = df['time_stamp'].apply(lambda x: x.strftime('%Y-%m-%d %H:%M:%S'))
- df['wind_turbine_name'] = str(origin_wind_name)
- df['year_month'] = df[['year', 'month']].apply(lambda x: str(x['year']) + str(x['month']).zfill(2), axis=1)
- cols = df.columns
- if self.paths_and_table.read_type == 'second':
- type_col = 'year_month'
- else:
- type_col = 'year'
- date_strs = df[type_col].unique().tolist()
- for date_str in date_strs:
- save_path = path.join(self.paths_and_table.get_tmp_formal_path(), str(date_str),
- str(origin_wind_name) + '.csv')
- create_file_path(save_path, is_file_path=True)
- now_df = df[df[type_col] == date_str][cols]
- if self.paths_and_table.save_zip:
- save_path = save_path + '.gz'
- now_df.to_csv(save_path, compression='gzip', index=False, encoding='utf-8')
- else:
- now_df.to_csv(save_path, index=False, encoding='utf-8')
- del now_df
- self.set_statistics_data(df)
- del df
- trans_print("保存" + str(wind_col_name) + "成功")
- def mutiprocessing_to_save_file(self):
- # 开始保存到正式文件
- all_tmp_files = read_excel_files(self.paths_and_table.get_read_tmp_path())
- # split_count = self.pathsAndTable.multi_pool_count
- split_count = use_files_get_max_cpu_count(all_tmp_files)
- all_arrays = split_array(all_tmp_files, split_count)
- try:
- for index, arr in enumerate(all_arrays):
- with multiprocessing.Pool(split_count) as pool:
- pool.starmap(self.save_to_csv, [(i,) for i in arr])
- update_trans_transfer_progress(self.paths_and_table.id,
- round(50 + 15 * (index + 1) / len(all_arrays), 2),
- self.paths_and_table.save_db)
- except Exception as e:
- trans_print(traceback.format_exc())
- message = "保存文件错误,系统返回错误:" + str(e)
- raise ValueError(message)
- def run(self):
- self.mutiprocessing_to_save_file()
- update_trans_transfer_progress(self.paths_and_table.id, 65,
- self.paths_and_table.save_db)
|